Investigating paired differences for data sets with special structures after PCA

John Castura Compusense Inc.

Canada

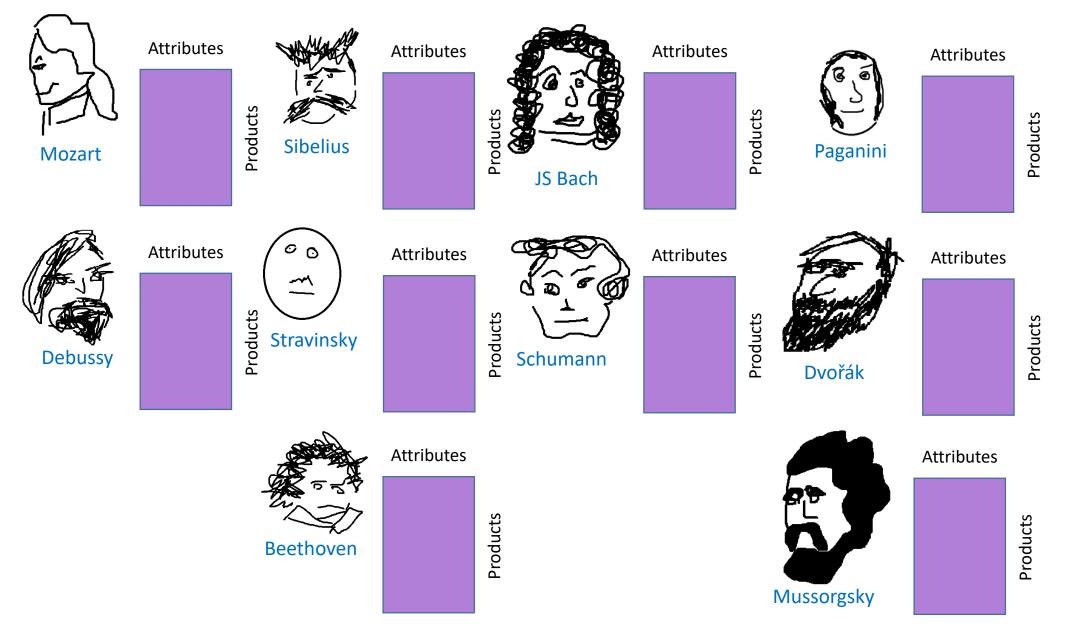
Paula Varela Tormod Næs Nofima AS Norway

<complex-block>

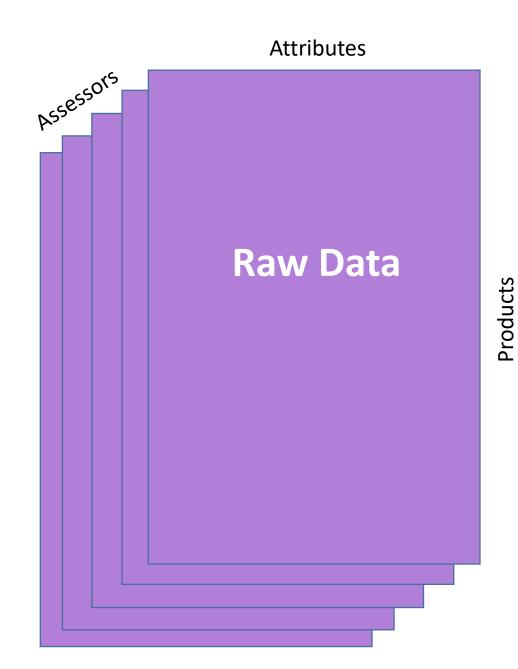
A typical application of principal component analysis in sensory evaluation

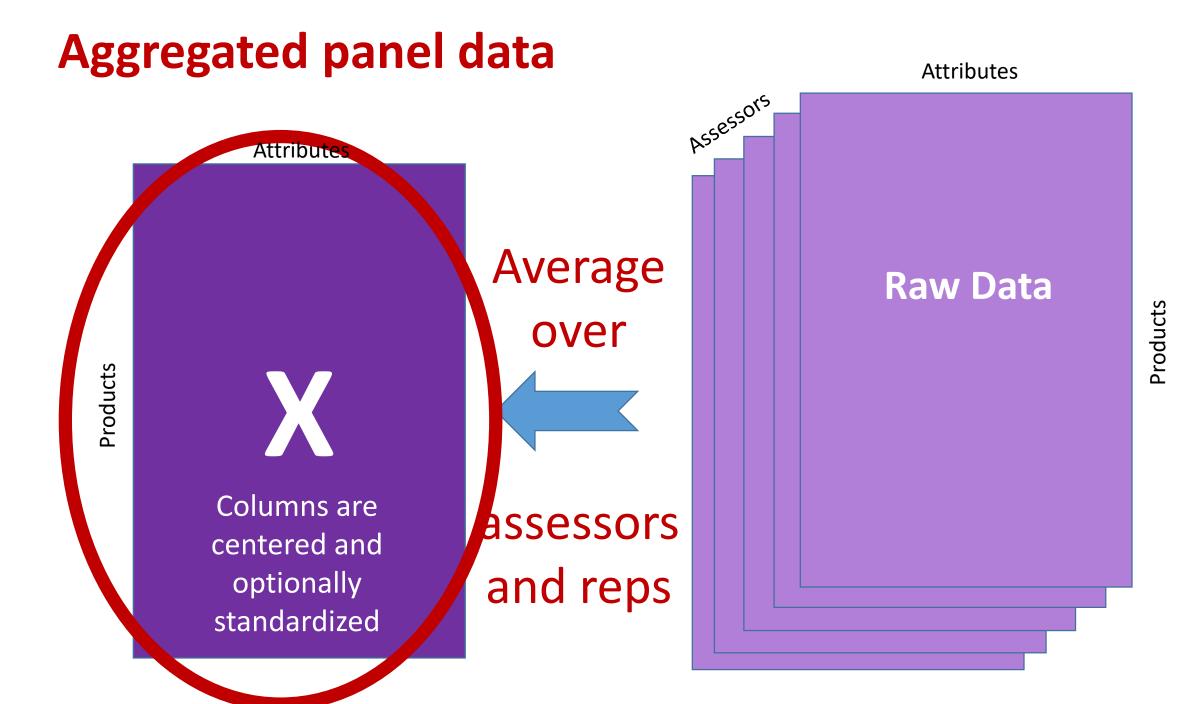
Panel of Trained Sensory Assessors

Data from a trained sensory panel

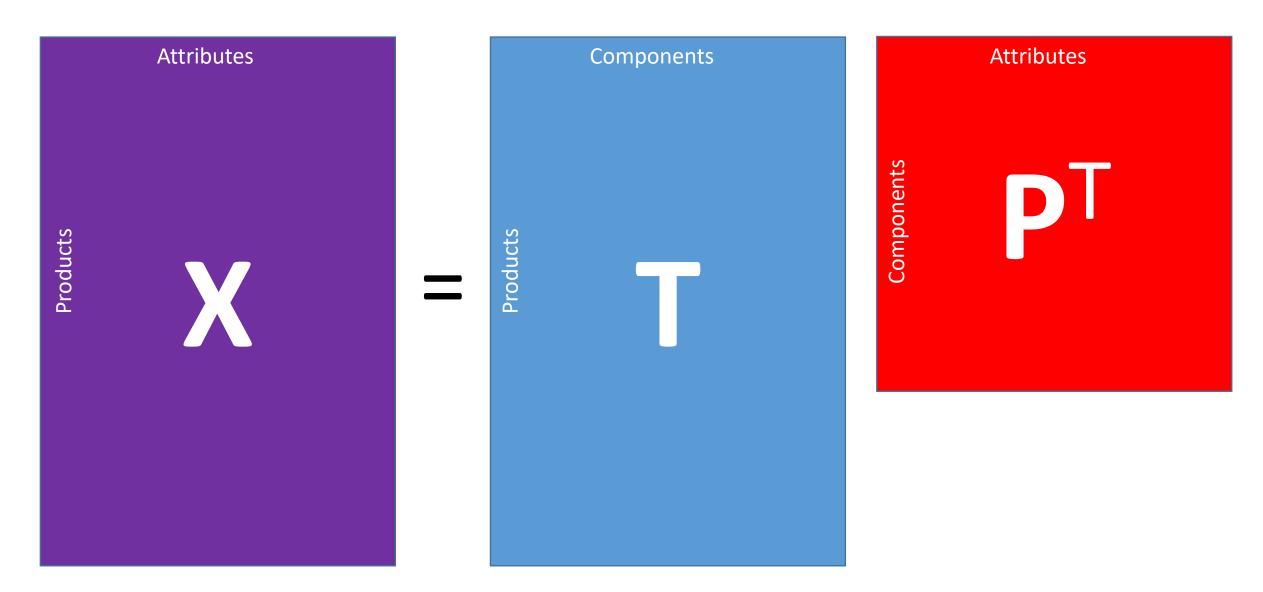


Panel data



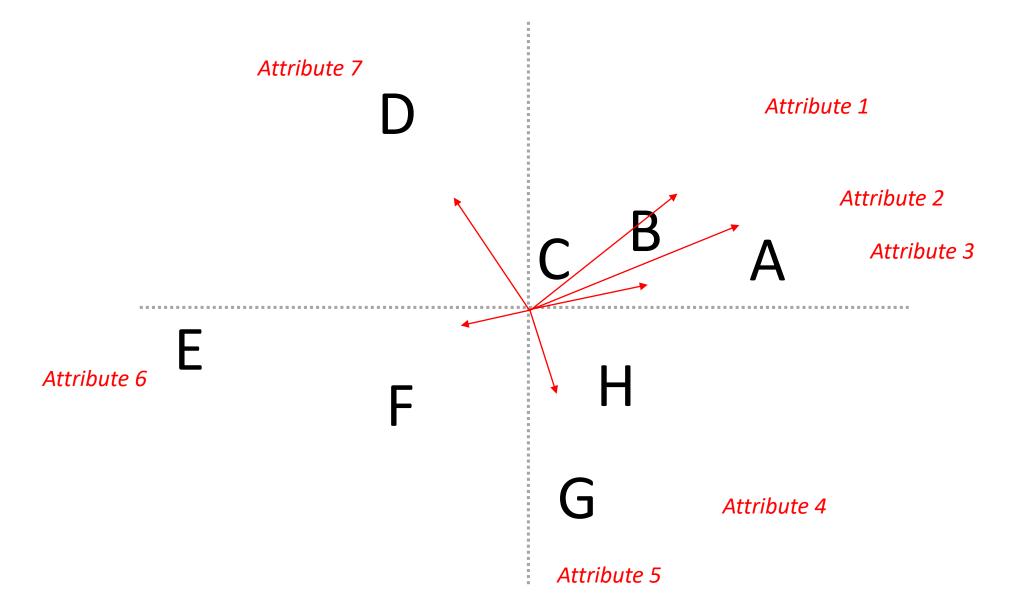


Principal component analysis

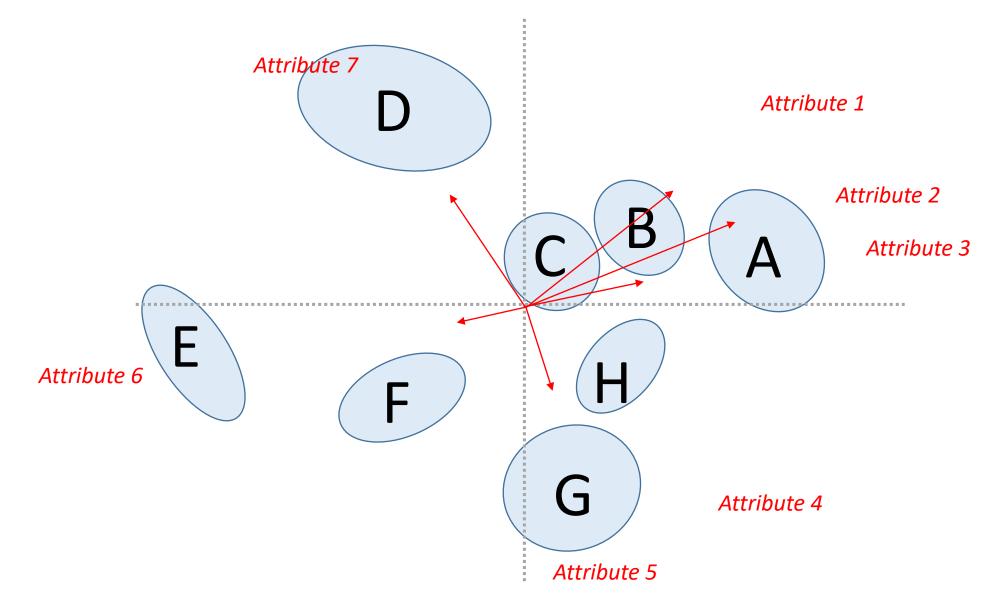


Dimension Reduction to A PCs

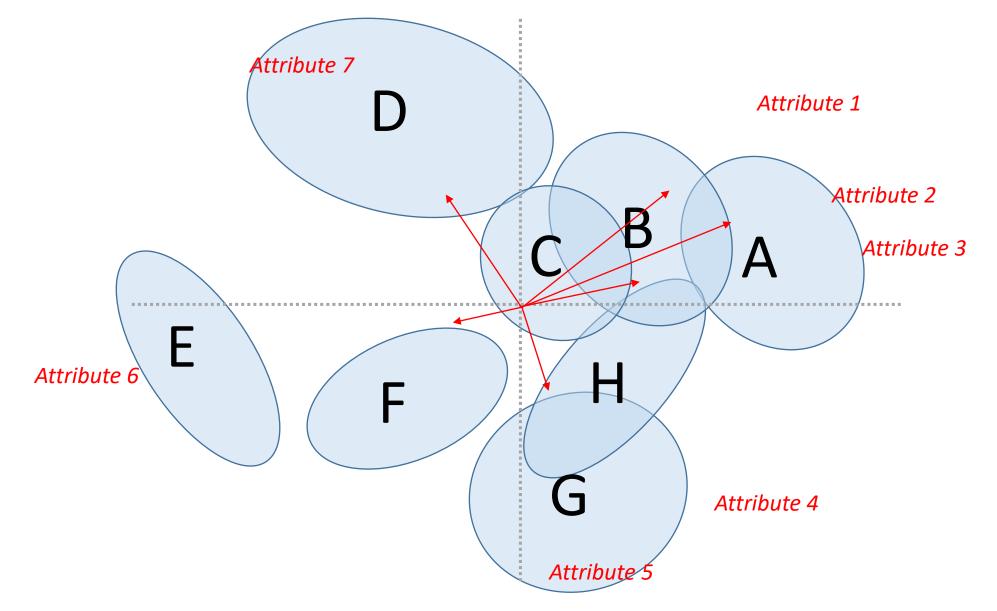
PCA results



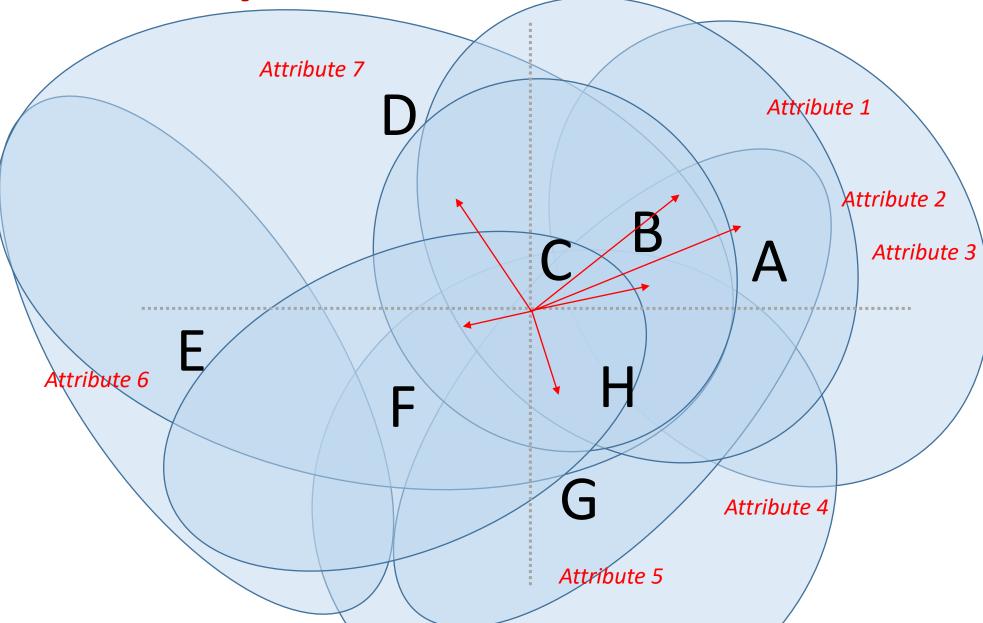
Uncertainty in PCA results



Uncertainty in PCA results



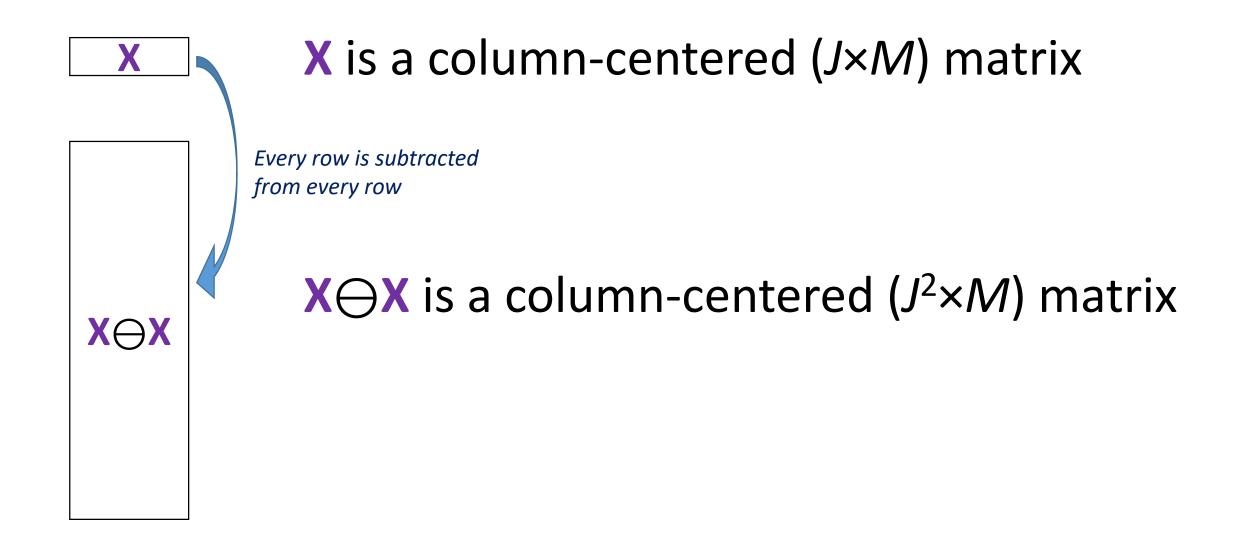
Uncertainty in PCA results



Paired Comparisons after PCA

Castura, J.C., Varela, P., & Næs, T. (2023). Investigating paired comparisons after principal component analysis. *Food Quality and Preference*, 106, 104814. https://doi.org/10.1016/j.foodqual.2023.104814

"Crossdiff-unfolding"



"Crossdiff-unfolding"

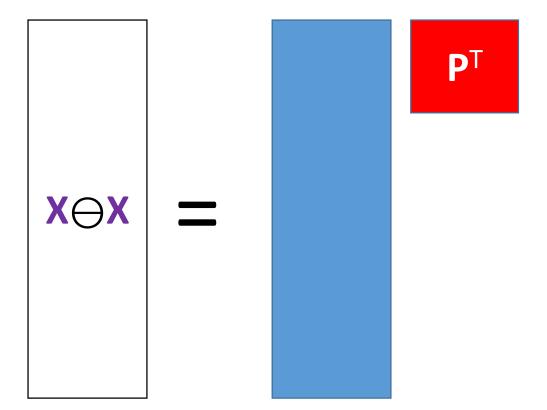
The covariance matrix of X and the covariance matrix of X⊖X are identical except for a multiplier.

Next, we consider PCA of X and PCA of $X \ominus X$.

Key relationships

PCA of X

PCA of X⊖X



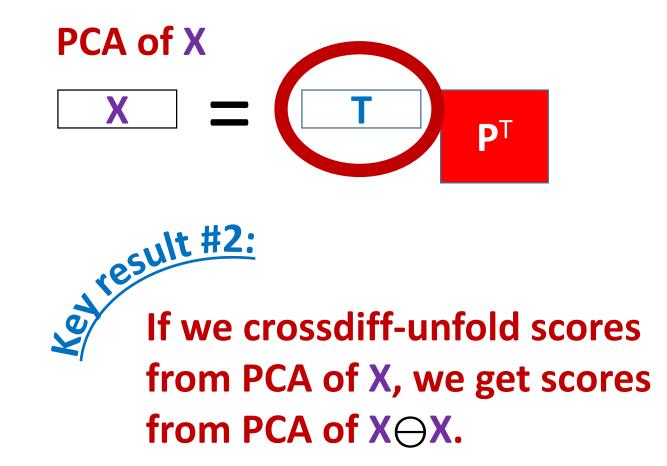
Key relationships

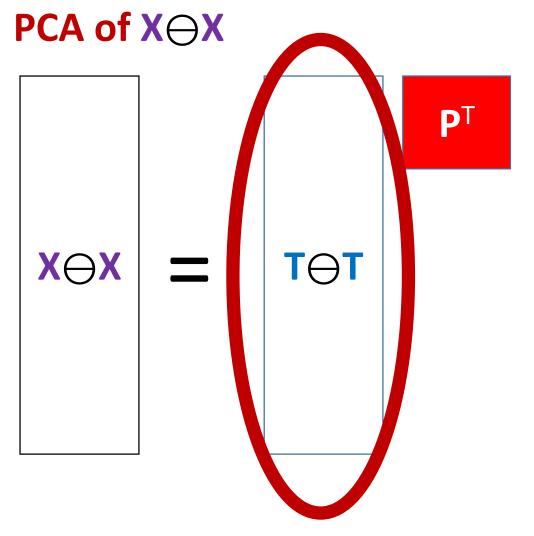
PCA of X

Ρ extresult #1: **Loading matrices** obtained from these two **PCA** solutions are identical.

PCA of X \ominus X Ρ X \ominus X

Key relationships



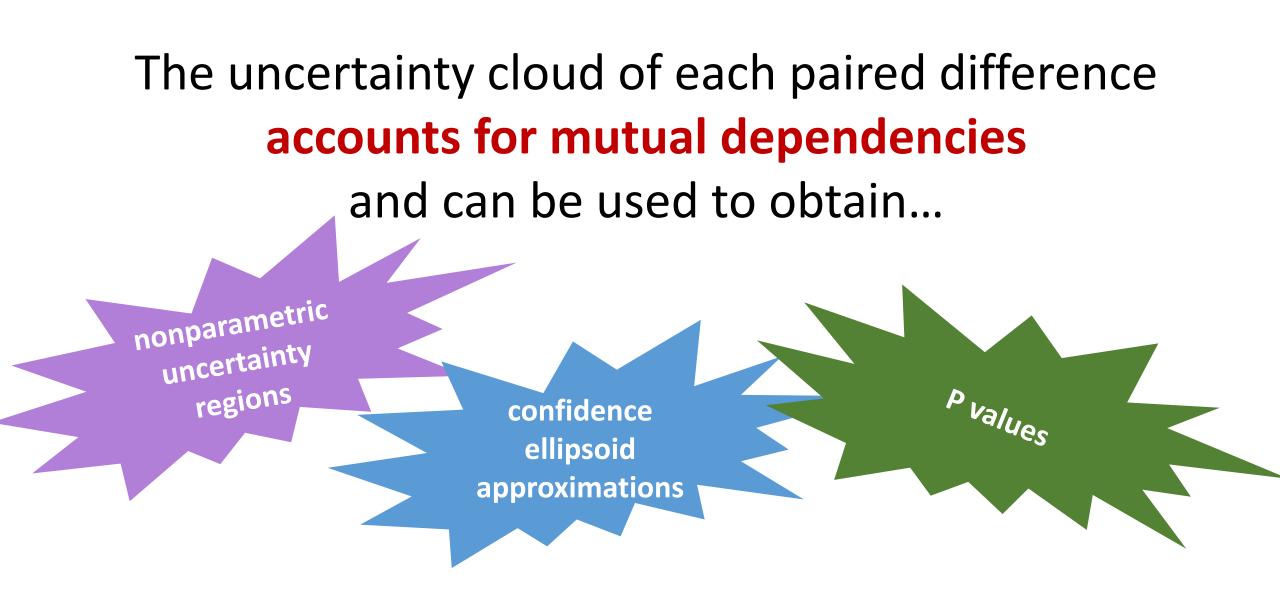


Paired comparisons

Row objects in **X** and **all paired comparisons** have the same PCs

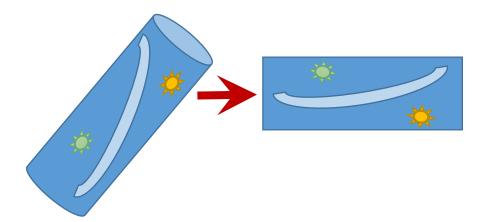
Uncertainty in Paired Comparisons after PCA

Castura, J.C., Varela, P., & Næs, T. (2023) Evaluation of complementary numerical and visual approaches for investigating pairwise comparisons after principal component analysis. *Food Quality and Preference*, 107, 104843. https://doi.org/10.1016/j.foodqual.2023.104843

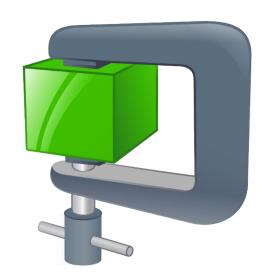


Principal component analysis

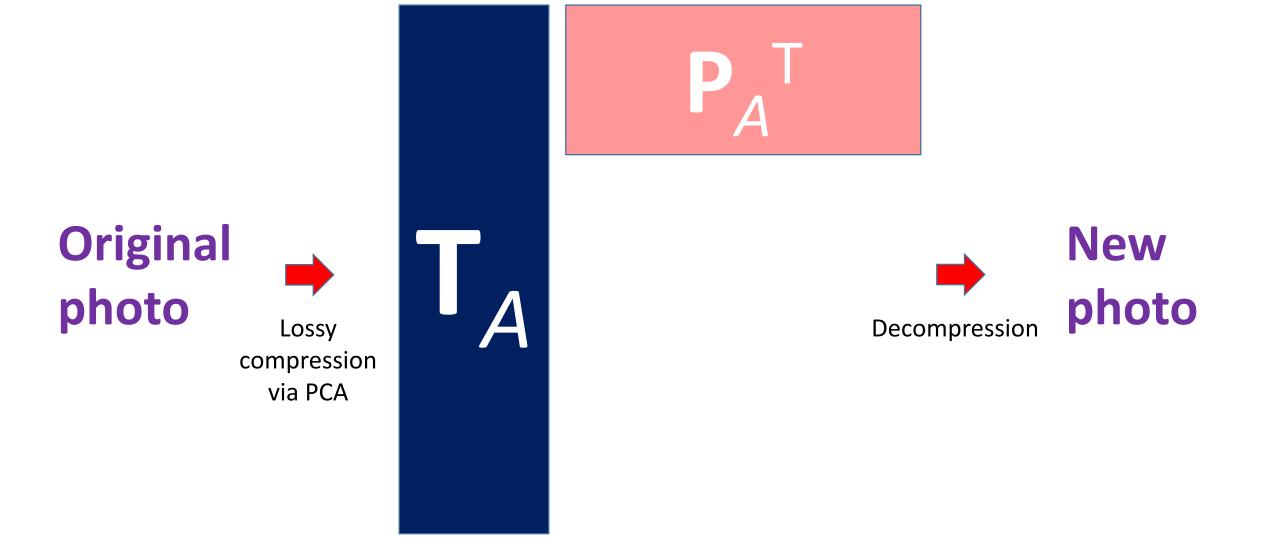
PCA is a statistical method that maximizes the variance in the standardized linear projection of a matrix.



PCA is a method for **data compression** via dimension reduction.



PCA of a Photograph



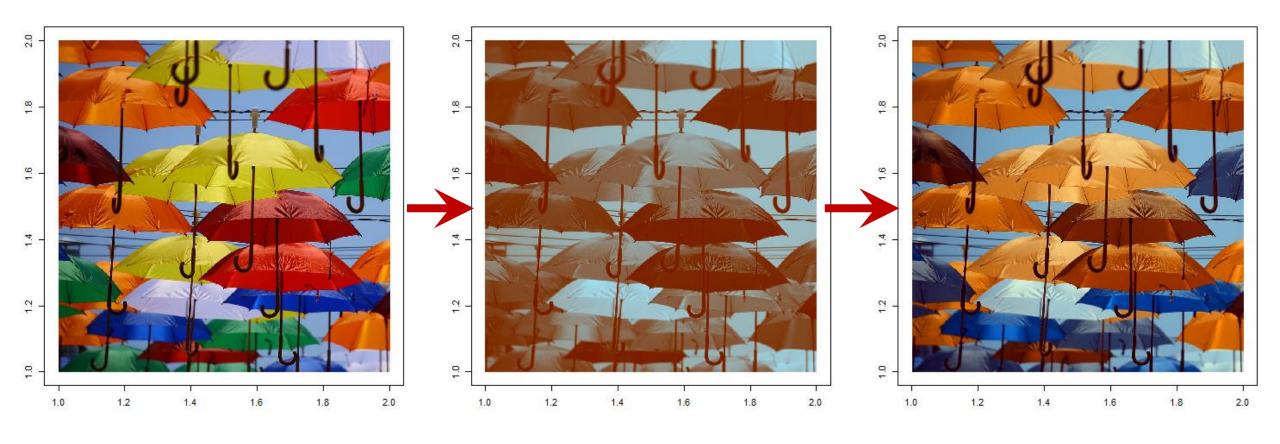
Lossy compression – example 1



Original image has 3 components (RGB)

Compression to 1 PC 93% of RGB variance extracted Compression to 2 PCs 97% of RGB variance extracted

Lossy compression – example 2



Original image has 3 components (RGB)

Compression to 1 PC 57% of RGB variance extracted Compression to 2 PCs 92% of RGB variance extracted

Investigating a Subset of Paired Comparisons after PCA

Castura, J.C., Varela, P., & Næs, T. (2023). Investigating only a subset of paired comparisons after principal component analysis. *Food Quality and Preference*, 110, 104941. https://doi.org/10.1016/j.foodqual.2023.104941

When are only a subset of paired comparisons relevant?

Examples:

1. Many Test Products vs One Control

Focus on Test-Control pairs, not Test-Test pairs

2. Temporal sensory data

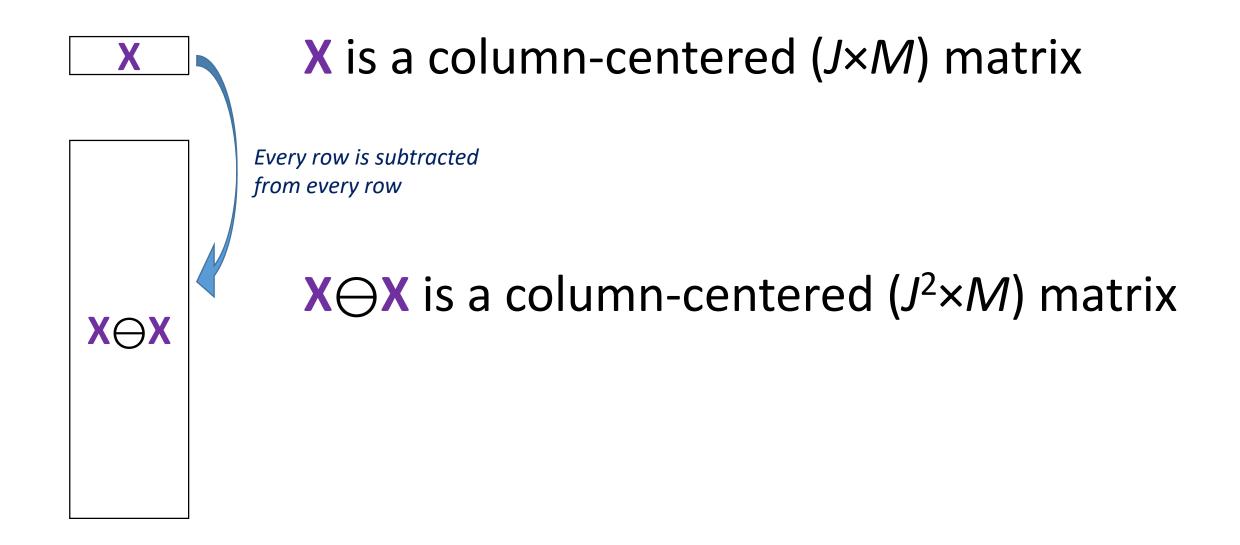
Focus on Within-timepoint pairs, not Across-timepoint pairs

Investigating only a subset of paired comparisons

"...the interrelationships between the variables might be different for the subset of paired comparisons than it is for all paired comparisons. So the covariance matrix for a matrix of all paired comparisons and the covariance matrix of selected paired comparisons will differ depending on the data."

> Castura, J.C., Varela, P., & Næs, T. (2023). Investigating only a subset of paired comparisons after principal component analysis. *Food Quality and Preference*, 110, 104941.

Crossdiff-unfolding



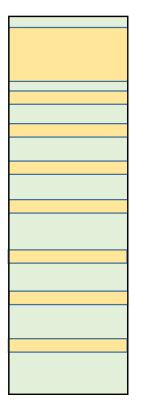
Rows of X \ominus **X contain all paired comparisons**

X⊖X

 $(J^2 \times M)$ matrix

Matrix Δ^* **contains only** *C* **relevant paired comparisons**

 $(J^2 \times M)$ matrix



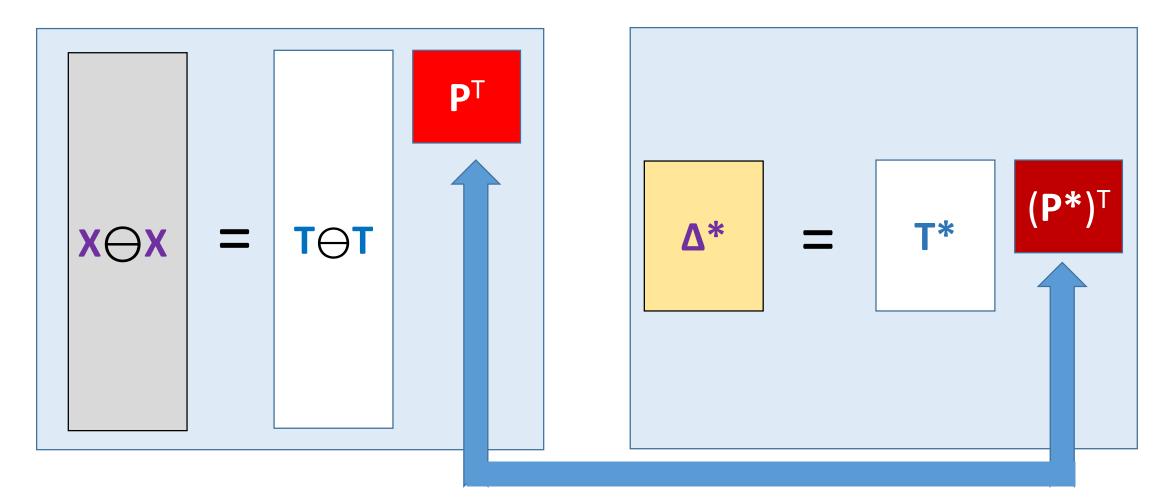
Δ*

(2C×M) matrix

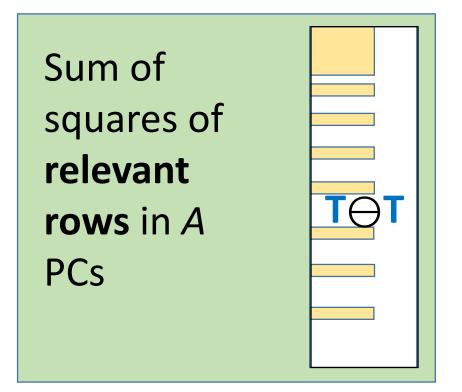
 \rightarrow

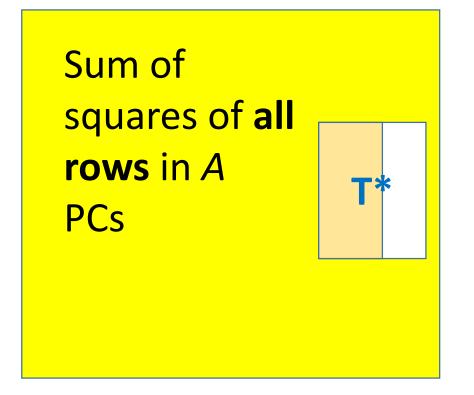
 Δ^* contains a subset of the rows in $X \ominus X$

PCs of $X \ominus X$ and PCs of Δ^* are usually different

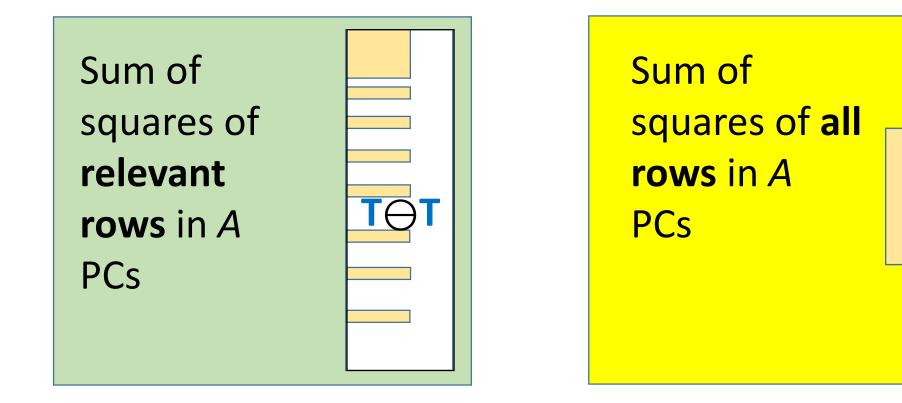


Calculate the relevant sum-of-squares extracted

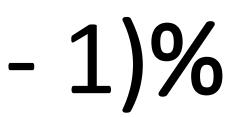




Gain of focusing on A PCs of Δ^* instead of A PCs of $X \ominus X$



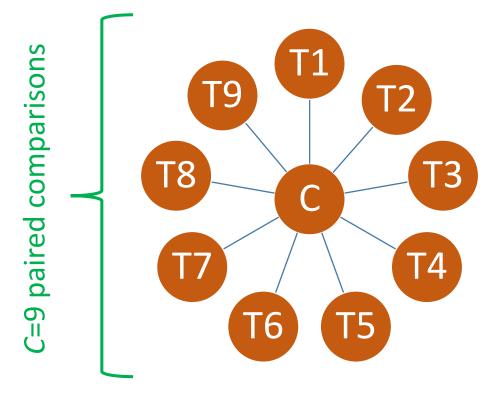
Gain = 100(



Example 1. QDA of multiple products vs a control

All Paired Comparisons

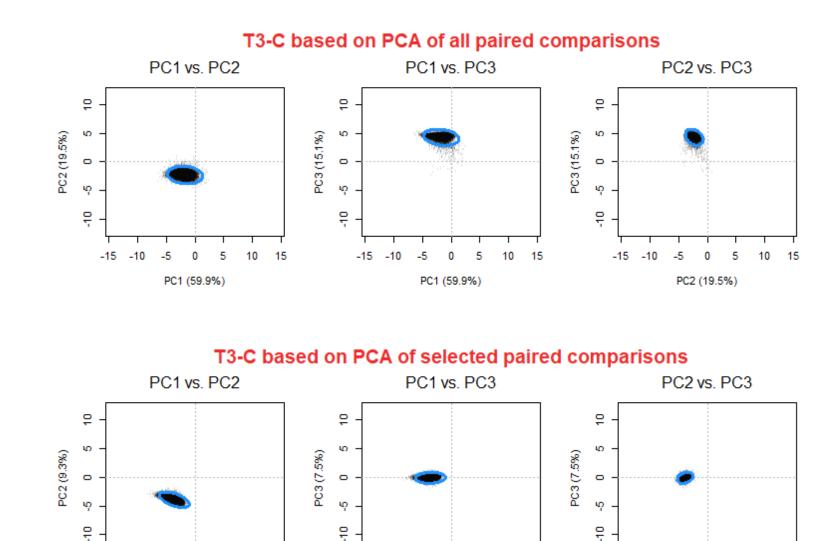
Relevant Paired Comparisons



 $X \ominus X$ has $J^2 = 100$ rows

Δ* has 2*C*=18 rows

Example 1. QDA of multiple products vs a control



1 PC: 15% 2 PCs: 14% 3 PCs: 1%

Gain:

(2023) [eComponent] doi:10.1016/j.foodqual.2023.104941 & Næs (Castura, Varela,

-15 -10

-5

PC1 (80.8%)

5

10

15

-15 -10

-5

5

0

PC1 (80.8%)

10

15

-15 -10

-5

0

PC2 (9.3%)

5

10

15

Example 2. Temporal check-all-that-apply

All Paired Comparisons

- 8 yogurts × 56 timepoints
- 448 combinations
- All pairs = 100,028
- 10 attributes

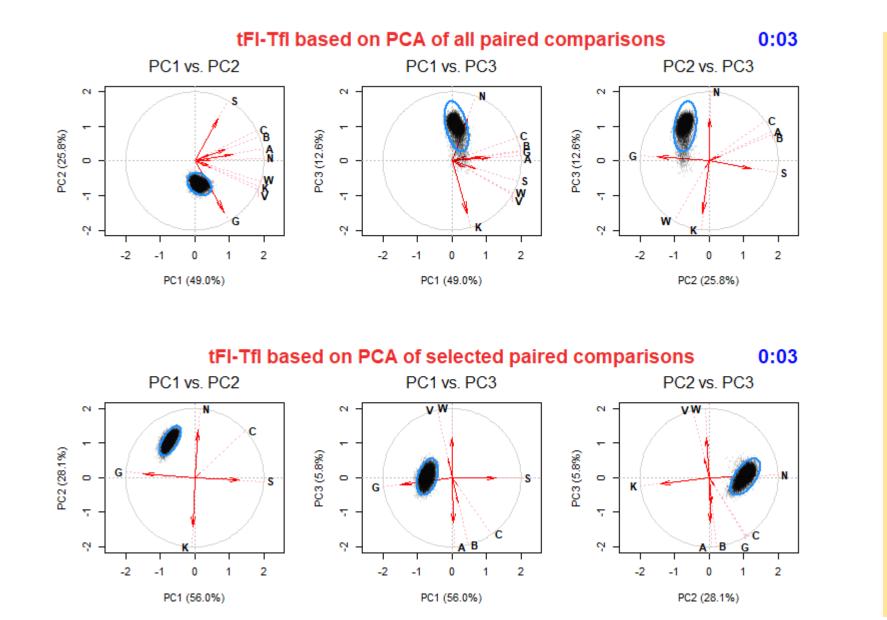
X⊖X has dimension 100028 × 10

Relevant Paired Comparisons

- 28 within-timepoint pairs
- 56 timepoints
- $C = 28 \times 56 = 1568$
- 10 attributes

 Δ^* matrix has dimension 3136 × 10

Example 2. Temporal check-all-that apply



Gain: 1 PC: >3500% 2 PCs: 52% 3 PCs:

1%

When only a subset of paired comparison are relevant

Advantages of PCA of Δ^* over PCA of $X \ominus X$

- Δ* contains only relevant variance
 ...so *all* variance extracted by PCA of Δ* is relevant
- Important PCs will tend to have large %VAF
- More natural to focus interpretation on PCs with large %VAF
- Recommended only if a subset of paired comparison are relevant

Advantages of PCA of $X \ominus X$ over PCA of Δ^*

- Interpretations identical to interpretations of PCA of X
- Conventional so easier to communicate
- Row objects in X are well represented in PCs of X⊖X

John Castura Compusense.

Paula Varela Tormod Næs

For further information, please contact jcastura@compusense.com