Investigating paired differences for data sets with special structures after PCA

A typical application of principal component analysis
 in sensory evaluation

Panel of Trained Sensory Assessors

Stravinsky
Mozart

Paganini

Dvořák

Beethoven

JS Bach

Schumann

Data from a trained sensory panel

Panel data

Aggregated panel data

Principal component analysis

Dimension Reduction to A PCs

PCA results

Uncertainty in PCA results

Uncertainty in PCA results

Uncertainty in PCA results

Paired Comparisons after PCA

Castura, J.C., Varela, P., \& Næs, T. (2023). Investigating paired comparisons after principal component analysis. Food Quality and Preference, 106, 104814. https://doi.org/10.1016/j.foodqual.2023.104814

"Crossdiff-unfolding"

X is a column-centered $(J \times M)$ matrix

Every row is subtracted from every row
$\mathrm{X} \ominus \mathrm{X}$ is a column-centered $\left(J^{2} \times M\right)$ matrix

"Crossdiff-unfolding"

X
The covariance matrix of X and the covariance matrix of $X \ominus X$ are identical except for a multiplier.

Next, we consider PCA of X and PCA of $X \ominus X$.

Key relationships

PCA of X

PCA of $X \ominus X$

Key relationships

PCA of X

Loading matrices obtained from these two PCA solutions are identical.

PCA of $X \ominus X$

Key relationships

If we crossdiff-unfold scores from PCA of X, we get scores from PCA of $X \ominus X$.

Paired comparisons

Row objects in X and all paired comparisons have the same PCs

The uncertainty cloud of each paired difference accounts for mutual dependencies and can be used to obtain...
nonparametric uncertainty regions Y

Principal component analysis

PCA is a statistical method that maximizes the variance in the standardized linear projection of a matrix.

PCA is a method for data compression via dimension reduction.

PCA of a Photograph

Lossy compression - example 1

Original image
has 3 components (RGB)

Compression to 1 PC 93% of RGB variance extracted

Compression to 2 PCs
97% of RGB variance extracted

Lossy compression - example 2

Investigating a Subset of Paired Comparisons after PCA

Castura, J.C., Varela, P., \& Næs, T. (2023). Investigating only a subset of paired comparisons after principal component analysis. Food Quality and Preference, 110, 104941. https://doi.org/10.1016/j.foodqual.2023.104941

When are only a subset of paired comparisons relevant?

Examples:

1. Many Test Products vs One Control

Focus on Test-Control pairs, not Test-Test pairs
2. Temporal sensory data

Focus on Within-timepoint pairs, not Across-timepoint pairs

Investigating only a subset of paired comparisons

"...the interrelationships between the variables might be different for the subset of paired comparisons than it is for all paired comparisons. So the covariance matrix for a matrix of all paired comparisons and the covariance matrix of selected paired comparisons will differ depending on the data. "

Crossdiff-unfolding

X is a column-centered $(J \times M)$ matrix

Every row is subtracted from every row
$\mathrm{X} \ominus \mathrm{X}$ is a column-centered $\left(J^{2} \times M\right)$ matrix

Rows of $\mathrm{X} \ominus \mathrm{X}$ contain all paired comparisons

$X \ominus X$

$\left(J^{2} \times M\right)$ matrix

Matrix Δ^{*} contains only C relevant paired comparisons

$X \ominus X$

$\left(J^{2} \times M\right)$ matrix

PCs of $\mathrm{X} \ominus \mathrm{X}$ and PCs of Δ^{*} are usually different

Calculate the relevant sum-of-squares extracted

Sum of
squares of all
rows in A
PCs

Gain of focusing on A PCs of Δ^{*} instead of A PCs of $x \ominus x$

Sum of
squares of all rows in A PCs

Gain $=100(\square / \square-1) \%$

Example 1. QDA of multiple products vs a control

All Paired Comparisons

$X \ominus X$ has $J^{2}=100$ rows

Relevant Paired Comparisons

Δ^{*} has $2 C=18$ rows

Example 1. QDA of multiple products vs a control

T3-C based on PCA of all paired comparisons

PC1 vs. PC2

PC1 vs. PC3

PC2 vs. PC3

Gain:

1 PC:
15\%

2 PCs:
14\%

3 PCs:
1\%

Example 2. Temporal check-all-that-apply

All Paired Comparisons

Relevant Paired Comparisons

- 8 yogurts $\times 56$ timepoints
- 448 combinations
- All pairs = 100,028
- 10 attributes
- 28 within-timepoint pairs
- 56 timepoints
- $C=28 \times 56=1568$
- 10 attributes

$\mathrm{X} \ominus \mathrm{X}$ has dimension 100028×10

Example 2. Temporal check-all-that apply

When only a subset of paired comparison are relevant

Advantages of PCA of Δ^{*} over PCA of XӨX

- Δ^{*} contains only relevant variance
...so all variance extracted by PCA of Δ^{*} is relevant
- Important PCs will tend to have large \%VAF
- More natural to focus interpretation on PCs with large \%VAF
- Recommended only if a subset of paired comparison are relevant

Advantages of PCA of XӨX over PCA of Δ^{*}

- Interpretations identical to interpretations of PCA of X
- Conventional so easier to communicate
- Row objects in X are well represented in PCs of XӨX

John Castura

(C) Compusense.

Paula Varela

Tormod Næs

For further information, please contact jcastura@compusense.com

