

Acknowledgements

Thanks to Brian Franczak (MacEwan Unversity, Edmonton, Alberta, Canada) and Chris Findlay (Compusense Inc., Guelph, Ontario, Canada) for helpful discussions.

Thanks to **JOSEF Zach** (Ipsos Marketing, Munich, Germany) for the invitation to join this workshop and for providing the workshop data set.

Some Takeaways

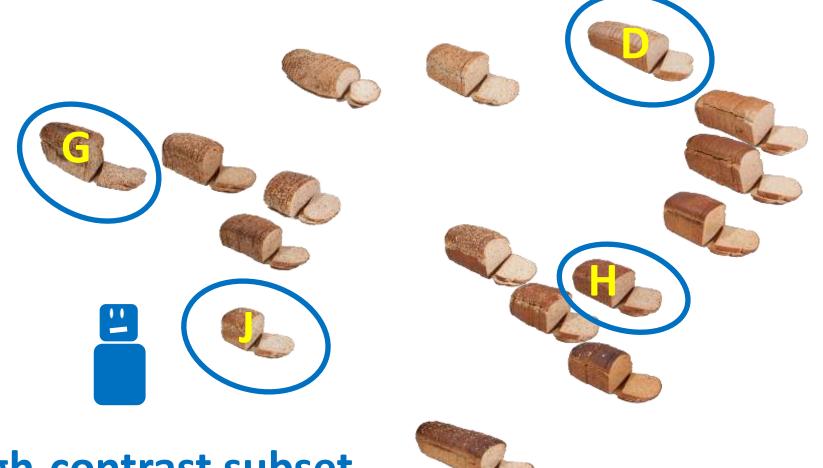
Data is not Good just because it is Complete

- It is "the devil we know"
- Consumer responses change as the test progresses
- Sometimes less is more...

Data is not Good just because it is Incomplete

- Impact of first-position effect is more pronounced
- Sometimes less is less...

	F	A	I	D	
	В	С	E	I	
	Н	E	J	В	
	I	F	С	А	
2	Е	В	Н	С	
▲ (G	J	D	Н	
	А	D	F	G	
	С	I	В	F	
	D	G	А	J	
	J	Н	G	Е	
	D	С	G	В	
	I	Н	F	J	
	В	G	С	D	
	А	В	D	Е	
	000		000		

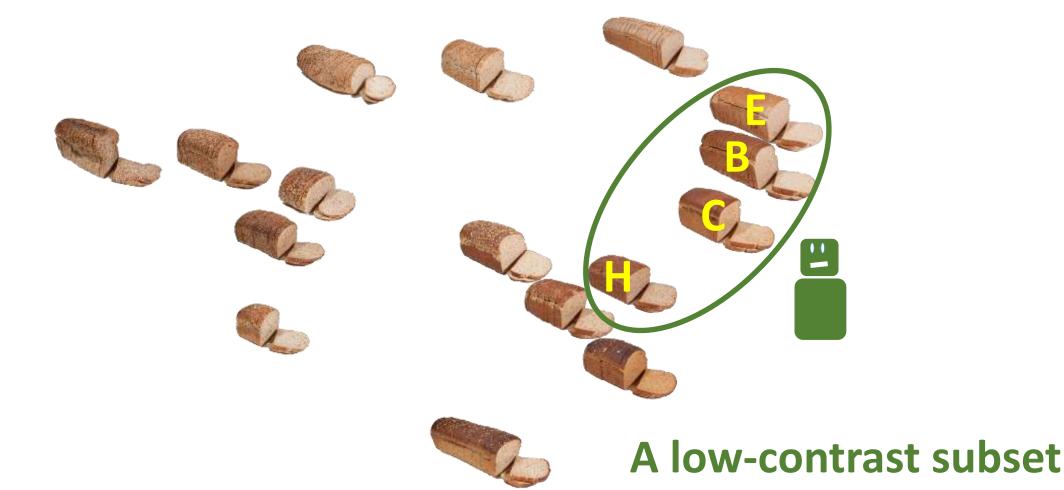


A high-contrast subset

Hedonic responses are given for a wide range of products. From these few responses we learn a lot about this consumer's preferences.

A high-contrast subset

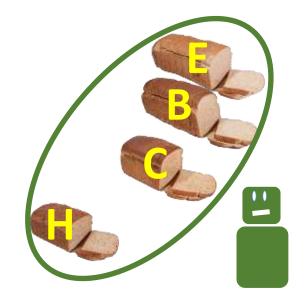
	F	A	I	D	
	В	С	Е	I	
	Н	E	J	В	
2	Ι	F	С	A	
	E	В	Н	С	
	G	J	D	Н	
	А	D	F	G	
	С	I	В	F	
	D	G	А	J	
	J	Н	G	E	
	D	С	G	В	
	Ι	Н	F	J	
	В	G	С	D	
	А	В	D	E	
				•••	



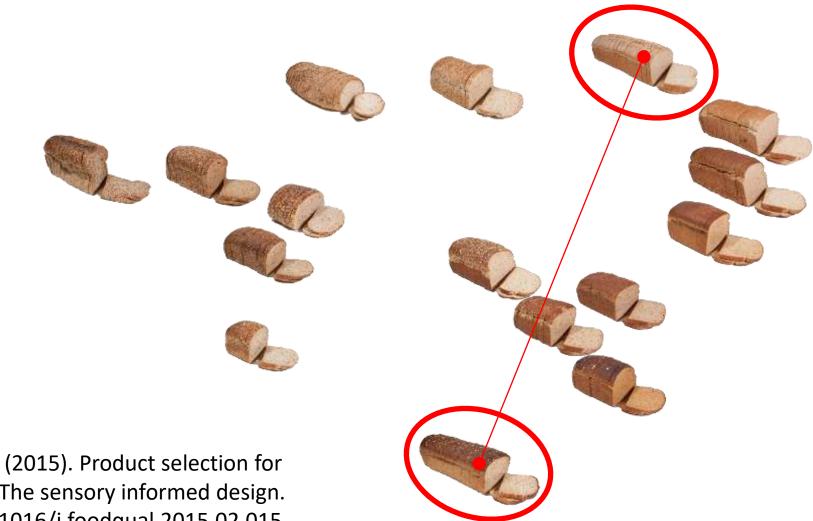
Hedonic responses are given for a narrow range of products. So we learn little about this consumer's preferences.

A low-contrast subset

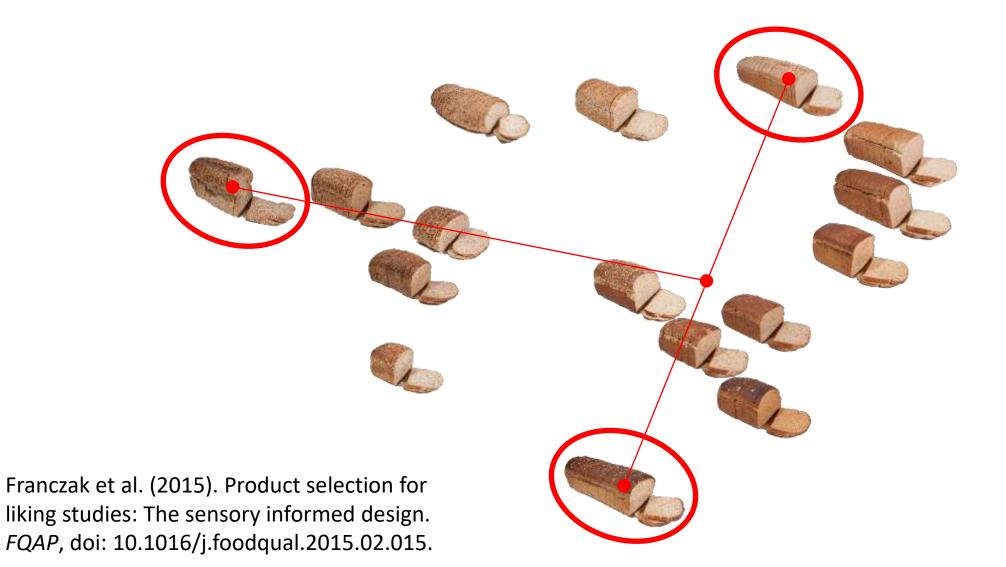
Would this product have been liked or disliked

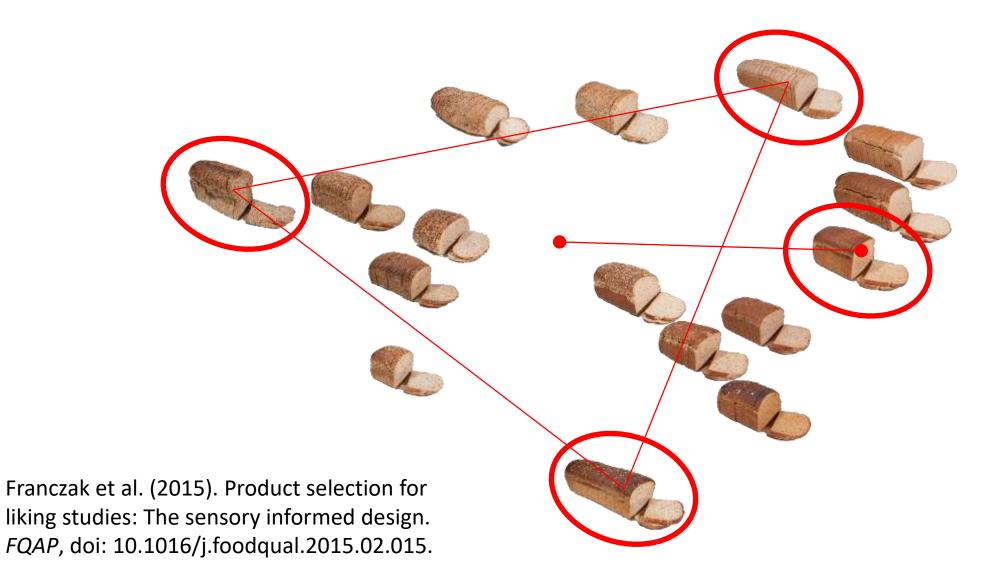


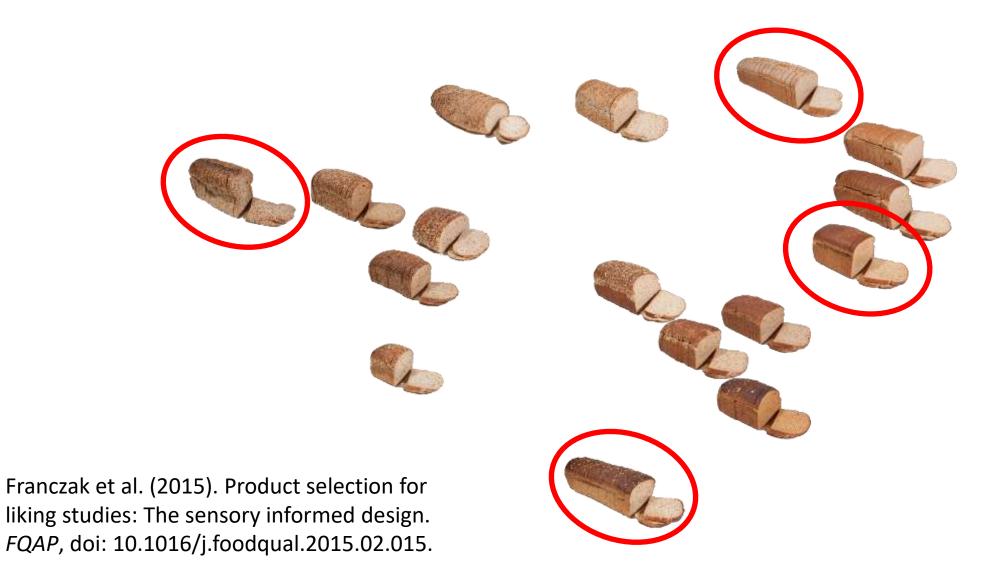
A low-contrast subset



Franczak et al. (2015). Product selection for liking studies: The sensory informed design. FQAP, doi: 10.1016/j.foodqual.2015.02.015.







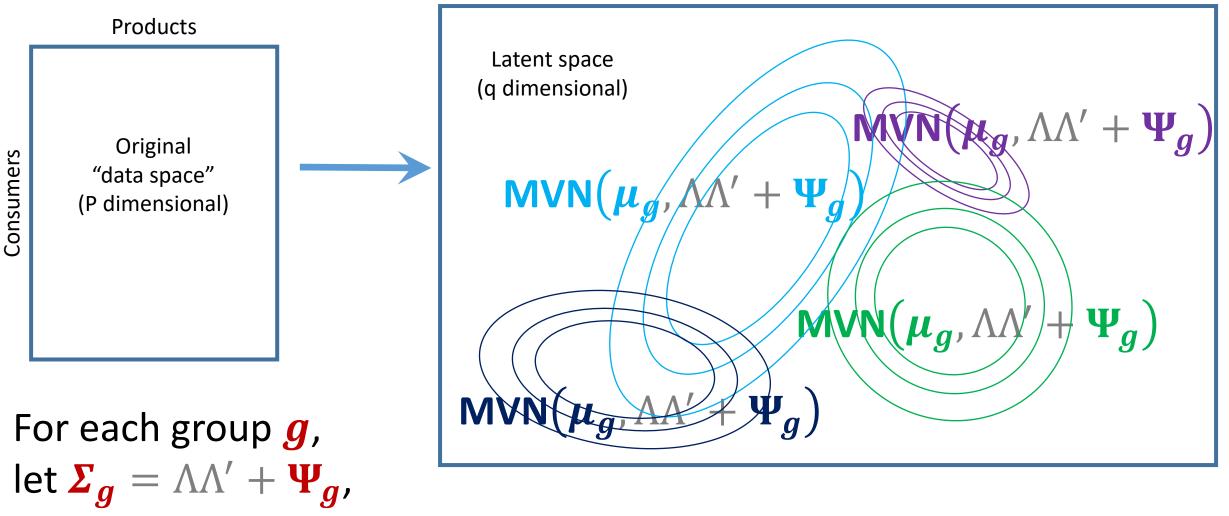
Franczak et al. (2015). Product selection for liking studies: The sensory informed design. FQAP, doi: 10.1016/j.foodgual.2015.02.015. Order balanced

Every subset has reasonably high contrast

(...in as many dimensions as is relevant..)

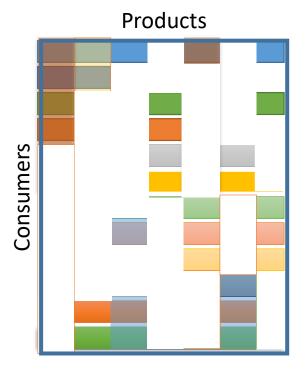
Mixture of factor analyzers

"MBC" model based clustering



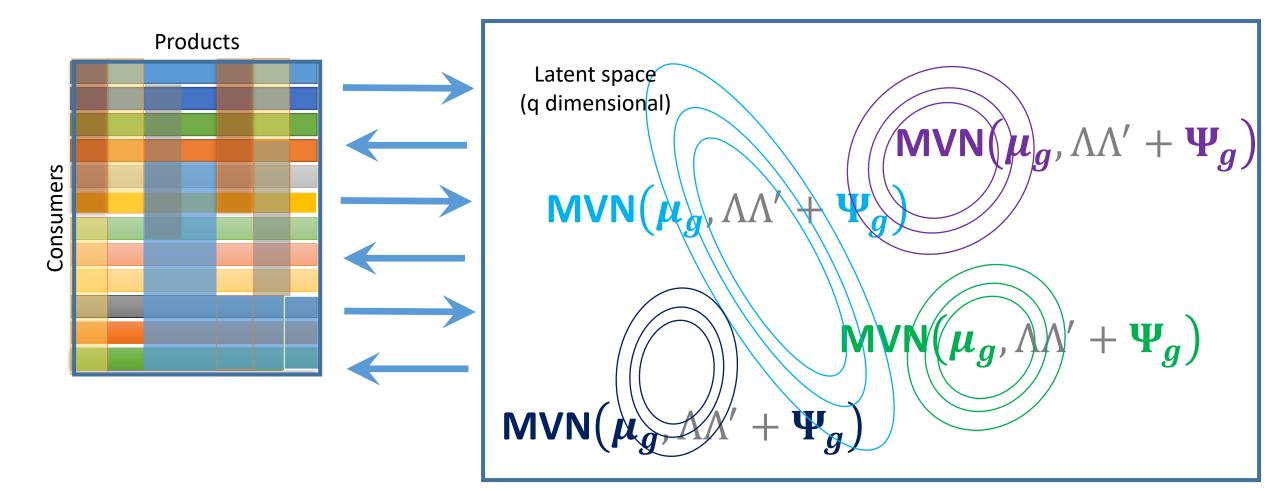
where Λ is a common loading matrix (shared by all groups).

Model-based clustering + clusterwise imputation



Browne, R.P., McNicholas, P.D., & Findlay, C.J. (2013). A partial EM algorithm for clustering white breads. *arXiv preprint arXiv:1302.6625*.

Model-based clustering + clusterwise imputation



"MBC + Imputation" model based clustering and imputation Browne, R.P., McNicholas, P.D., & Findlay, C.J. (2013). A partial EM algorithm for clustering white breads. *arXiv preprint arXiv:1302.6625*.

What are the benefits?

Faster! ... Cheaper! ... Better?

Will it work for every product category?
Will it work for *my* product category?
It depends...

Risk comes from not knowing what you are doing.*

Samples need to span the <u>relevant</u> sensory space

- Relevant sensory space cannot be too complex
- Samples must span attributes that drive the hedonic response
- Needs to be enough samples presented (not too many... not too few...)

Must be a high enough signal-noise ratio

- Tricky if products are too variable
- ... or if order effects are too strong

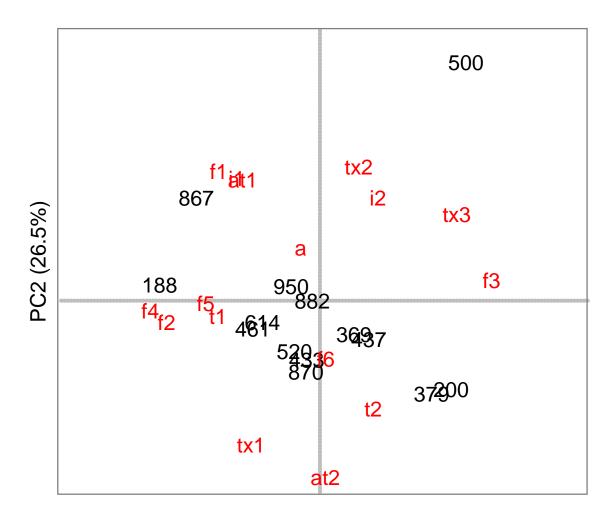
Need good design and analysis

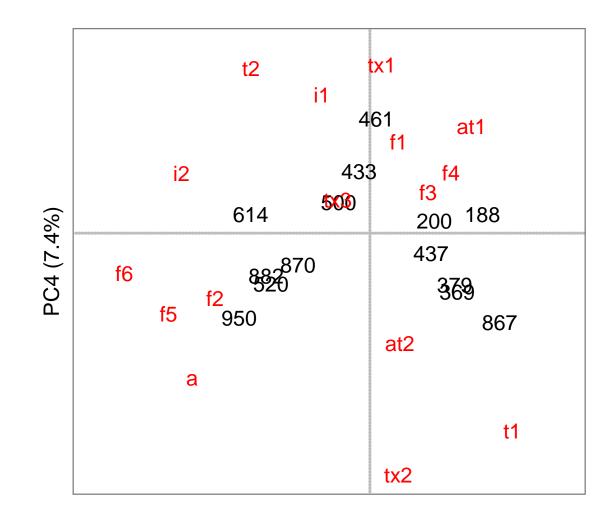
- Select consumers from the target user population
- Get good descriptive sensory data and analyze it well
- Get the experimental design from a good algorithm
- Do clustering and imputation properly
- Beware the R defaults, run many times with random starts

The Workshop Data Set

Spatial Sensory Segmentation

Sensory space



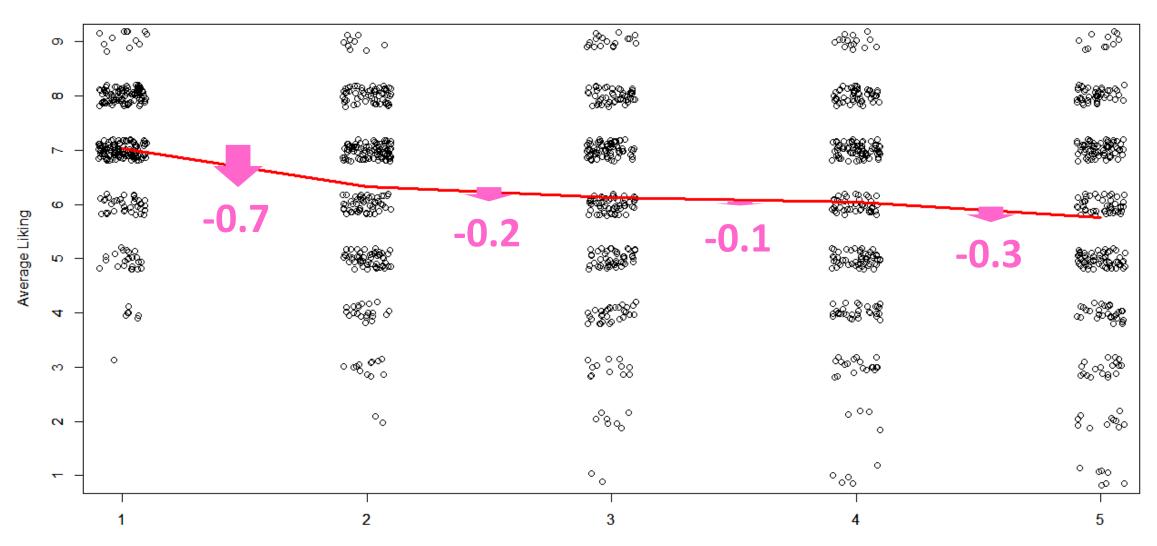


PC3 (18.8%)

PC1 (28.3%)

Order effects

Day 1 Results



Presentation Order

Some ideas

Preference vs. Liking clusters Compensation for order effects High-contrast subsets vs. All subsets Complete results vs. Day 1 (<1/3 of data)

References

Browne, R. P., McNicholas, P. D., & Findlay, C. J. (2013). A partial EM algorithm for clustering white breads. *arXiv preprint arXiv:1302.6625*.

Cleaver, G., & Wedel, M. (2001). Identifying random-scoring respondents in sensory research using finite mixture regression models. *Food Quality and Preference*, *12*(5-7), 373-384.

Danzart M., Sieffermann J.M., Delarue J. (2004). New developments in preference mapping techniques: finding out a consumer optimal product, its sensory profile and the key sensory attributes. *7th Sensometrics Conference*, July 27-30, 2004, Davis, CA.

Franczak, B. C., Browne, R. P., McNicholas, P. D., & Findlay, C. J. (2015). Product selection for liking studies: The sensory informed design. *Food Quality and Preference*, 44, 36-43.

Franczak, B. C., Browne, R. P., McNicholas, P. D. (2020). sensory: Simultaneous Model-Based Clustering and Imputation via a Progressive Expectation-Maximization Algorithm. R package version 1.2. <u>https://CRAN.R-project.org/package=sensory</u>

Hottenstein, A. W., Taylor, R., & Carr, B. T. (2008). Preference segments: A deeper understanding of consumer acceptance or a serving order effect?. *Food Quality and Preference*, *19*(8), 711-718.

Le, S., & Husson, F. (2008). Sensominer: A package for sensory data analysis. *Journal of Sensory Studies*, 23(1), 14-25.

McNicholas, P. D. (2016). Mixture Model-Based Classification. Chapman and Hall/CRC.

Meullenet, J. F., Xiong, R., & Findlay, C. J. (2008). *Multivariate and Probabilistic analyses of Sensory Science Problems* (Vol. 25). John Wiley & Sons.

