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Some Takeaways
Data is not Good just because it is Complete 
• It is “the devil we know”
• Consumer responses change as the test progresses
• Sometimes less is more…

Data is not Good just because it is Incomplete 
• Impact of first-position effect is more pronounced
• Sometimes less is less…
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Balanced incomplete block design
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A high-contrast subset
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Hedonic responses are 
given for a wide range of 

products. 
From these few responses 
we learn a lot about this 
consumer’s preferences.

A high-contrast subset

Balanced incomplete block design
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Balanced incomplete block design
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Hedonic responses are 
given for a narrow 
range of products. 

So we learn little about 
this consumer’s 

preferences.
A low-contrast subset

Balanced incomplete block design
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Would this 
product have 
been liked or 
disliked

A low-contrast subset

Balanced incomplete block design



Sensory-informed

design



Sensory-informed design

Franczak et al. (2015). Product selection for 
liking studies: The sensory informed design. 
FQAP, doi: 10.1016/j.foodqual.2015.02.015.
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Order 
balanced

Every 
subset has 
reasonably 
high 
contrast
(…in as many 
dimensions as is 
relevant..)



Mixture of factor analyzers
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MVN 𝝁𝒈, ΛΛ
′ +𝚿𝒈

MVN 𝝁𝒈, ΛΛ
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MVN 𝝁𝒈, ΛΛ
′ +𝚿𝒈

MVN 𝝁𝒈, ΛΛ
′ +𝚿𝒈

where Λ is a common loading matrix (shared by all groups).

Original 
“data space”

(P dimensional)

Latent space
(q dimensional)

For each group 𝒈, 
let 𝜮𝒈 = ΛΛ′ +𝚿𝒈,

“MBC” model based clustering



Model-based clustering + clusterwise imputation
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Browne, R.P., McNicholas, P.D., & Findlay, C.J. (2013). 
A partial EM algorithm for clustering white breads. 
arXiv preprint arXiv:1302.6625.
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Latent space
(q dimensional)

C
o

n
su

m
e

rs

Products

Browne, R.P., McNicholas, P.D., & Findlay, C.J. (2013). 
A partial EM algorithm for clustering white breads. 
arXiv preprint arXiv:1302.6625.

“MBC + Imputation” 
model based clustering and imputation

Model-based clustering + clusterwise imputation



What are the benefits?

Will it work for every product category?

Will it work for my product category?

Sensory-informed design

Faster! … Cheaper! … Better?

It depends…



Samples need to span the relevant sensory space
• Relevant sensory space cannot be too complex
• Samples must span attributes that drive the hedonic response
• Needs to be enough samples presented (not too many… not too few…)

Must be a high enough signal-noise ratio
• Tricky if products are too variable
• …or if order effects are too strong 

Need good design and analysis
• Select consumers from the target user population 
• Get good descriptive sensory data and analyze it well
• Get the experimental design from a good algorithm
• Do clustering and imputation properly
• Beware the R defaults, run many times with random starts

Risk comes from not knowing what you are doing.*

* quote from Warren Buffet



The Workshop Data Set

Spatial Sensory Segmentation
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Order effects



Some ideas

Preference vs. Liking clusters
Compensation for order effects

High-contrast subsets vs. All subsets
Complete results vs. Day 1 (<1/3 of data)
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