Sensometrics
\& Consumer Science

Relationship between dynamic sensory profiles and static liking: Dominance vs. description

Gastón Ares ${ }^{1}$, Lucía Antúnez ${ }^{1}$, Florencia Alcaire ${ }^{1}$, Shari Zorn ${ }^{1}$, Leticia Vidal ${ }^{1}$, Ana Giménez ${ }^{1}$, John C. Castura ${ }^{2}$
${ }^{1}$ Universidad de la República, Uruguay
${ }^{2}$ Compusense Inc., Canada

Sensometrics
\& Consumer Science

Introduction

- Sensory perception is a dynamic process (Hutchings \& lillford, 1988; Sudre et al., 2012):
- Breakdown and physical changes due to mastication
- Mixture with saliva
- Temperature changes

- The dynamics of sensory perception can affect consumer hedonic perception.
- Research on the topic is still limited (Paulsen et al., 2013; Thomas et al., 2015; Veldhuizen et al., 2006).

Methodologies for dynamic sensory characterization

- Methodologies based on attribute intensity
- Time-intensity
- Multiple attribute time-intensity
- Methodologies based on attribute selection
- Temporal Dominance of Sensations (TDS)
- Temporal Check-all-that-apply (TCATA)

Sensometrics
\& Consumer
Science

Temporal Dominance of Sensations (TDS)

Identification of the dominant sensory characteristic at each moment of the evaluation (Pineau et al., 2003).

- The characteristic that catches attention at a given time, not necessarily the most intense (Pineau et al., 2009)
$\square \quad \square \quad 0: 03$

Moist	Sweet	Garlic
Soft	Smokey	Firm
Chewy	Sour/Acidic	Savoury

Sensometrics \& Consumer Science

Temporal Check-all-that apply (TCATA) questions

Selection of all the terms that are applicable to describe the sample at each moment of the evaluation (Castura et al., 2016).

Firm
Savoury

Sour/Acidic
Sweet
Smokey

Soft

Chewy

Gan情

Sensometrics
\& Consumer Science

Do TDS and TCATA provide the same information?

- TDS and TCATA provide complementary information
- Across several studies with trained assessors and consumers (Ares et al., 2015):
- TCATA provided a more detailed description of the temporal evolution of the sensory characteristics of samples than TDS.
- TCATA enabled greater discrimination among samples than TDS.

Sensometrics
\& Consumer Science

The aim of the present work was to compare TDS and TCATA in terms of their ability to identify the influence of the dynamic sensory profile of food products on consumer overall liking scores.

Sensometrics
\& Consumer
Science

DESIGN OF THE STUDIES

Sensometrics
\& Consumer
Science

Study	Product category	Number of samples	Total number of consumers	Task duration (s)	Number of terms	Design of the study
1	Orange juice	5	200	25	11	Between-subjects design: TDS (50), TCATA (50) or overall liking (100)
2	French bread	5	100	25	8	Between-subjects design: TDS (50) or TCATA (50) All consumers rated their
3	Chocolate	5	100	60	10	dynamic sensorycharacterization task

Sensometrics
\& Consumer
Science
(G) Compusense.

RESULTS

Sensometrics
\& Consumer
Science

TDS and TCATA curves

- Significantly dominant attributes in TDS tended to show the highest citation proportions in TCATA.
- Several attributes showed high citation proportions in TCATA but did not reach significance in TDS.

Sensometrics
\& Consumer
Science

- In some cases significantly dominant attributes did not explain consumer overall liking scores.

Overall liking score of the orange juice: 4.7

Sensometrics
\& Consumer
Science

Difference curves

- In the French bread and Chocolate studies, both methodologies identified significant differences between all the pairs of samples for several sensory attributes.
- The information provided by TDS and TCATA was similar

Study ID	Pair of samples	Difference in overall liking scores	Discriminating attributes in TDS (duration of significant difference, in seconds)	Discriminating attributes in TCATA (duration of significant difference, in seconds)
$2 \text { - }$ French bread	S1-S2	-0.7	+soft (4), -crunchy (8), -tasty (5)	$\begin{array}{lrll} \hline \text { +soft } \quad \text { (19), } & \text {-crunchy } & (8), \\ \text { +smooth (1) } \end{array}$
	S1-S3	-0.6	+soft (19), - crunchy (21), + light (5s), -tasty (2), +salty (1), -toasted (2)	+soft (22), -crunchy (23), +light (16), +smooth (2), -toasted (1)
	S1-S4	-0.9	+soft (21), -crunchy (14)	$+ \text { +soft(14), -crunchy (23), +tasty }$ (1), +smooth (1)

Sensometrics
\& Consumer
Science

- In the orange juice study, TDS was not able to identify significant differences between a couple of samples with significantly different overall liking scores.

Sensometrics
\& Consumer
Science

PLS regression on the areas under TDS or TCATA curves

Sensometrics
\& Consumer Science

TDS and TCATA data treated as CATA (Meyners, 2016)

- Responses for each individual sample were split into four identically long periods of time (Q1 to Q4) and analyzed as CATA.

Cons	Sample	Attribute	0	1	2	\ldots	30	31	32	\ldots	45	46	47	\ldots	59	60	Q1	Q2	Q3	Q4
1	1	Hard	0	1	1	\ldots	0	0	0	\ldots	0	0	0	\cdots	0	0	1	0	0	0
1	1	Chocolate	0	0	0		0	0	1		1	1	1		1	0	0	0	1	1

- Correspondence analysis (CA) was performed on the frequency table and consumer liking scores were projected onto the map.

Sample	Hard Q1	Hard Q2	HardQ3	\ldots	Chocolate Q1	ChocolateQ2	\ldots	Cons1	\ldots
1	43	38	\ldots	\ldots	15	43	\ldots	5	
2	35	21	\ldots	\ldots	13	26	\ldots	6	
\ldots									

French bread study

Chocolate study

Sensometrics
\& Consumer Science

Penalty-lift analysis (Meyners et al., 2013)

包Vanilla favour

Average overall liking (X=1,Q1) = OV1
\square Vanilla flavour

Average overall liking ($\mathrm{X}=0, \mathrm{Q} 1$) $=\mathrm{OV} 2$
Penalty lift (X, Q1) = OV1-OV2

- Differences between the two average values were calculated and their significance evaluated using an unpaired t-test assuming equal variance

Sensometrics
\& Consumer
Science

French bread study

Sensometrics
\& Consumer

Chocolate study

Off-flavour (Q1-Q4), Hard (Q1-Q2), Soft (Q1-Q4), Sweet (Q1, Q2), Melting (Q1-Q3) and Chocolate flavour (Q2-Q4) were significant drivers of (dis)liking in both methodologies

Sensometrics
\& Consumer
Science

CONCLUSIONS

Sensometrics
\& Consumer Science

- Evidence of greater detail in the dynamic sensory profiles obtained using TCATA compared to TDS was obtained
- In many cases the more detailed dynamic sensory profiles led to additional insights on the sensory attributes that influenced consumer overall liking.
- In other cases, dominance provided complementary information to attribute description.
- Further research is necessary to determine if the drivers of liking identified in only one of the methodologies contribute to product optimization efforts

Sensometrics
\& Consumer
Science

THANK YOU FOR YOUR ATTENTION!

