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Motivating Example 

Should a proposed ingredient substitution 

advance to the next stage? 

this is an equivalence question 



Motivating Example 

Should a proposed ingredient substitution 

advance to the next stage? 

this is an equivalence question 

Before answering this question, let’s take a moment 
to consider the hypothesis testing framework. 



Hypothesis Tests 

We assume a distribution under the null hypothesis (H0). 
The probability of observing a result in the tail regions is 
low. 
 
We calculate a test statistic from the observed data.  
An extreme test statistic gives evidence to reject H0.  
We reject at the tails of the distribution.  
 
Now think about what this test statistic looks like in a 
typical statistical test (for difference). 
 
 
 



A Test for Difference 

Typically we reject H0 in favor of the alternative (H1) at 
the tails of the distribution. 
Observing a test statistic that falls in the tails are 
improbable under H0. 
 
 
 
 
 
 



A Test for Similarity 

If the test statistic comes from a difference testing 
paradigm, it falls in the center of the distribution. 
How do we reject H0 in favor of H1? 
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Merchandise: Genuine or Knock-off? 

Suppose I only want to buy genuine merchandise... 
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Type I and Type II errors: 
α-risk and β-risk 



Power calculations are made to determine an appropriate 
sample size.  
 
A low value is selected for β. 
 
We want to avoid concluding that products are not 
significantly different, when the products are, in fact, 
different. 

Power Approach 



If the null hypothesis (H0) is retained, it is reasoned that 
power was high enough that it would have been rejected 
in favor of the alternative (H1) if the products were 
dissimilar. Thus the products must be the same. 
 
But really no p-value “proves” or leads us to “accept” H0. 
 
Hypothesis test logic being is contorted to meet the 
objectives of trying to determine similarity.  

How does the Power Approach work? 



 
 
 
 
 
 
 
 
 
 
 

 

Rejection Region for Power Approach 
s Similar Not Similar 

X1-X2 



p-values can be affected by… 
 
Effect size: magnitude of difference between products. 
 
Sample size: underpowering the test misses meaningful 
differences, and overpowering the test enables detection 
of trivial differences.  
 
Relying only on p-values for decision-making is not a good 
practice.  

How does the Power Approach work? 



Rejection Region Illustrates Problems 

It could be that the confidence interval for the difference 
falls completely within the equivalence bounds, yet there 
is no conclusion of similarity. 
 
More precise measurement leads to decreased power for 
detecting similarity. 



Hypothesis Testing for Equivalence 

A proper hypothesis test for equivalence: 
 
 H0: Products not equivalent 
 H1: Products equivalent 

 

 



Let’s try a different approach... 

If we are looking 
for a hypothesis 
test, it is one that 
rejects the H0 
hypothesis of 
non-equivalence 
in the center of 
the distribution. 



Two One-Sided Tests (TOST) procedure 

Two hypotheses are tested: 

1) H01:  < 0-1 vs.  H11:   ≥ 0-1 

2) H02:  > 0+2 vs.  H12:   ≤ 0+2 

 

If both p-values are significant (at level α) then we can 
reject the complete H0 in favor of the H1 and declare 
Equivalence. 

 

The procedure gives a valid test of the complete 
alternative hypothesis H1: 0-1 ≤  ≤ 0+2. 



TOST in Action 
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TOST in Action 
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TOST & Confidence Interval Inclusion 

When the same α is used in both tests. It possible to 
construct (1-2α)100% confidence intervals. Products 
are Equivalent if the confidence interval is contained 
within the equivalence bounds. 

 

The confidence intervals for a hypothesis test for 
difference are (1-α)100% confidence intervals (which 
are not as wide). 

 

Note: products might be different, yet equivalent! 



Confidence Interval Inclusion 

0 + 2 0 0 - 1 



When can the TOST be applied? 

• The TOST procedure is flexible 

– Parametric or non-parametric tests 

– Discrete or continuous data 

– We want to ensure that some parameter falls between a 
lower equivalence bound and an upper equivalence bound 

 

 



Examples for the TOST procedure 

2-AFC consumer test on saltiness perception. 

 

Suppose we set the equivalence margin to =0.08. 

 

Equivalence:    [0.42, 0.58]  

 

Non-equivalence:  

   [0.00, 0.42), (0.58, 1.00] 

  Not salty enough      Too salty 



Examples for the TOST procedure 

Suppose bitterness is characteristic of the product but 
undesirable at high intensity. 

We can tolerate more of a decrease in bitterness, and 
less of an increase (e.g. 1=6, 2=3). 

 

A trained descriptive sensory panel evaluates bitterness 
intensity. 

H0:   μd < -6 or μd > 3 

H1:  -6 ≤ μd ≤ 3 

 



Examples for the TOST procedure 

Does the TOST procedure make sense for analyzing 
sensory difference tests, such as triangle, duo-trio, etc.?  

 

These are 1-sided tests – we don’t usually test whether 
incorrect responses are being made systematically! 

 

If pc falls below guessing probability the pd=0 is used 
(Bi, 2005; Christensen & Brockhoff, 2011). 



Confidence Interval Inclusion 

pd 0 



Similarity Testing in E18 Standards 

E 1885 Standard Test Method for Sensory Analysis - 
Triangle Test 

E 1958 Standard Guide for Sensory Claim Substantiation 

E 2139 Standard Test Method for Same-Different Test 

E 2164 Standard Test Method for Directional Difference 
Test 

E 2610 Standard Test Method for Sensory Analysis - Duo-
Trio Test 

 
 



From E 1885-04 

“8.1 Choose the number of assessors to yield the 
level of sensitivity called for by the test objectives. 
The sensitivity of the test is a function of three 
values: the α-risk, and the β-risk, and the maximum 
allowable proportion of distinguishers, pd.” 

 

“...pd is the proportion of the entire population of 
assessors who can distinguish between the two 
products. It is a strictly statistical “guessing model” of 
the assessor’s behavior.” 



Number of Assessor (E1885) 

Probably of falsely declaring a difference 

Proportion of distinguishers 

Probably of 
missing a true 
difference 



Example 1* 

Select α=0.1 and β=0.05 

Assumed proportion of detectors: pd=0.3 

Assumed proportion of correct responses: 

  pc = pd + (1/3)(1-pd) = 0.533 

 

Use E 1885 to determine number of assessors. 

 

 

* Example 1 from Bi (2005) 



 
 
 

 

Example 1 

54 



Assume the following is true:  
Products are more similar than we expected. 

 
True proportion of distinguishers is pd0=0.1 
True proportion correct responses:  
  pc = pd0 + (1/3)(1-pd0) = 0.1+0.3 = 0.4 
 
We expect to confirm similarity with high probability.  
Simulation studies allow us to investigate what happens in 
this scenario.  

Example 1 



Table of Critical Values 

Table A1.2 shows how many “correct” responses 
indicate a statistically significant result. 

23 



5000 sets 

H0 is retained in some sets and rejected in others. 
Similarity is confirmed with probability 0.49. 

Example 1 

n=54 



Table A1.1 in E1885-04 recommends a minimum of 457 
assessors at α=0.1, β=0.05, pd=0.1. 
 
Bi lets n=540 and re-runs the simulation to obtain 5000 
sets. 
 
H0 is retained in some sets and rejected in some others. 
The power approach confirms similarity with probability 
0.02. 
 
 

* Example 2 from Bi (2005) 

Example 2* 



 

Following E 1885, set α=β=0.05 and pd=0.3. Use n=66.  
 
Let n={66, 660} and  
pd = {0.4, 0.35, 0.30, 0.25, 0.20, 0.15, 0.1, 0.05, 0}.  
 
2500 simulated datasets for each of the 18 scenarios. 

Similarity based on Triangle 



Similarity based on Triangle 

Proportions in which similarity is confirmed n={66, 660} 
 
          True pd    n=66   n=660  

0.40   0.0020  0.0000 
0.35   0.0136  0.0000 
0.30   0.0516  0.0000 
0.25   0.1320  0.0000 
0.20   0.2800  0.0000 
0.15   0.5036  0.0004 
0.10   0.7108  0.0248 
0.05   0.8564  0.4124 
0.00   0.9512  0.9480 



So what is the ASTM approach? 

The person running the test sets α, β, and pd to get the 
number of assessors (n). 

The power of the test is such that if H0 is retained then 
the products are deemed Similar. 

H0 retained 

H0 rejected in 
favor of H1 



Distributions under H0 and H1 

The distribution under H0 is fixed.  

Suppose that there really are distinguishers in the 
population. The distribution under H1 is right-shifted. 

H0 retained H0 rejected in favor of H1 

“Similar” Significant 
difference 



Similarity is Affected by Shifts Large 

The more right-shifted the H1 distribution is, the less 
often we concluded that products are deemed Similar.  

Any shift to the right illustrates this trend. This is 
because the distribution under H0 is fixed. 

“Similar” Significant 
difference 



Similarity is Affected by Shifts Small 

The more right-shifted the H1 distribution is, the less 
often we concluded that products are deemed Similar.  

But the decrease in the proportion of Similar 
conclusions occurs for any shift of the H1 distribution to 
the right. 

“Similar” Significant 
difference 



Changing n Affects the p-value 

In practice n might be increased to balance serving orders 
or because additional assessors were invited in 
anticipation of no-shows. If there are no-shows for the 
test n might be reduced. Changing n can be problematic.  
 
As n becomes larger, sqrt(p(1-p)/n) becomes smaller. 
The probability of confirming similarity decreases. 
Increased precision  
 = increased probability of conclusion of difference  
 = decreased probability of confirming similarity 
 
 
 



Returning to Example 1 

That similarity was only confirmed in 49% of the time in 
simulation is disappointing. (We might as well have 
flipped a coin.) 

But it’s clear why this happened: the products were not 
identical – 10% of people can distinguish a difference! 
There was  a small shift in the distribution under H1 
against the distribution under H0. 

A different way of thinking about this is that we always 
compare with pd0=0, not with the pd selected by the 
researcher. 



Another Perspective 

But let’s look at this example from yet another 
perspective… the confidence interval of pd(obs). 

The test works such that products are determined to be 
Similar if pd(lower) < 0 < pd(upper). 

The confidence interval must include zero. 



Confidence Interval 

From the data observed in the Triangle test, Annex X4 
of E 1885-04 gives instructions for obtaining a 
confidence interval for the proportion of distinguishers 
in the population: 

(pd(lower), pd(upper)) = pd(obs) ± zαsd(obs) 

…where  

pd(obs)=1.5pd(obs)-0.5 

zα is the critical value at α from the normal distribution 

sd(obs)=1.5sqrt(pc(obs)(1-pc(obs))/n) 



Example 3 

Select α=β=0.05, pd=0.2. Thus n=147. 

Let the true pd(pop)=0.12 and we get a very 
representative sample in which we observe… 

pc = (1-pd)/3 + pd = 0.88/3 + 0.12 = 0.41 

…thus 60 correct responses, which is greater than the 
critical value  

xcrit = 147/3 + 1.64*sqrt(2*147/9) = 58 

So we reject H0, and declare that the samples are not 
similar. 

 



Example 3 

We reject H0 because the test statistic indicates that 
the products are different. 

 

Now, with the same data, let’s get the 95% confidence 
interval for pd(obs) using the method given in E 1885 X4. 

It is (0.054, 0.186). 

 

You should notice two things about this interval. 



Two Things to Notice… 

1. The 95% confidence interval (0.054, 0.186) does not 
include zero (pd(lower) > 0). 

There is a real shift between the H0 distribution and the H1 
distribution, so this makes perfect sense. 

 

2. The researcher set pd=0.2, and the 95% confidence 
interval is completely within the researcher’s 
specification (pd(upper) < pd). 

Yet the result is “not similar” because 0 is not in the 
confidence interval. 



Example 2 Revisited 

There was a shift under the H1 distribution (pd=0.1). 

 

Increasing n enabled detection of this small but real 
difference. H0 was often rejected.  

 

H0 was retained infrequently. Products were deemed 
Similar in only 2% of the tests. 



Example 4 

Another triangle test for similarity, with α=β=0.1, pd=0.4. 

Table A1.1 in E1885-04 recommended a minimum of 25 
assessors. We wouldn't normally run a similarity test 
with so few respondents, but this is for illustrative 
purposes only. 

 

Unbeknownst to me, the true proportion of 
distinguishers in the population is 0.2. 

 

Now imagine 3 alternate realities… 

 

 



Example 4 

Universe 1:  There were 3 no-shows. The 22 assessors 
gave 10 correct responses, but xcrit=11. Declare 
Similarity! 

 

Universe 2: All 25 assessors attend. There are 12 correct 
responses, and xcrit=12. The products are different. 

 

Universe 3: We had 28 assessors show up and collected 
all results. There were 13 correct responses, and xcrit=12. 
The products are different. 



What just happened? 

We lost power for detecting differences when n 
decreased. As our measurement error increased (larger 
variances, wider confidence intervals), so we failed to 
reject H0 more often.  

Result: products were declared Similar more often. 

 

Power for detecting differences increases with n.  

Measurement error decreases (smaller variances, tighter 
confidence intervals), so we rejected H0 more often. 

Result: Products are declared Similar less often. 



An Undesirable Property 

The Power Approach has the undesirable property that 
different products are deemed “similar” if they are 
observed with high variance but not with low variance. 

Similarity based on Triangle 

True pd n=66  n=660  
0.40 0.0020 0.0000 
0.35 0.0136 0.0000 
0.30 0.0516 0.0000 
0.25 0.1320 0.0000 
0.20 0.2800 0.0000 
0.15 0.5036 0.0004 
0.10 0.7108 0.0248 
0.05 0.8564 0.4124 
0.00 0.9512 0.9480 

Proportions in which similarity is confirmed n={66, 660} 

 

 



 
 
 
 
 
 
 
 
 
 
 

 

Recall this Rejection Region… 
s Similar Not Similar 

X1-X2 

Similarity tests will not have exactly this shape, but will 
share the same properties. 



Back to the Context 

After an ingredient substitution, current and new 
products don’t need to be identical...  

...but should be similar enough. 

 
Who decides how much is enough?  

This is not a statistical question (although historical 
data might help to answer this question). 

 

The researcher sets equivalence bounds, based on 
what is of practical relevance. 



Questioning proportion of 
distinguishers 

Proportion of distinguishers (pd) is a controversial 
framework, because this proportion varies depending 
on the test method (Ennis, 1993). 

 

Bi (2011) presents equivalence testing based on force-
choice methods, in which the parameter of interest is 
the Thurstonian discriminal distance (d’; ASTM E 2262), 
rather than pd. 



Tetrads 

At the Tetrad work group yesterday, Tom Carr proposed 
incorporating estimates of d’ and the confidence 
interval of d’ to evaluate differences and similarities. 

 

There will be a few issues that must be worked out, but 
this looks like a promising direction for the Tetrads 
document, as well as documents that cover other 
sensory difference tests. 



Motivating Examples 

Is my product at least as good as the 
competitor’s product? 

 
this is a non-inferiority question 



Win. Lose. Or Draw. 

You run a head-to-head test against a big competitor in 
a major market. 

 

Outcomes are win, lose, or draw. 

 

An equivalence test is inappropriate.  
You would be satisfied with a draw, but an equivalence 
test is not appropriate here – a win is not a failure! 

 

This is a meet-or-beat test. 



Non-inferiority Test 

Non-inferiority can be tested using a procedure that is 
linked to the TOST. 

 

One hypothesis is tested: 

 H01:  < 0-1 vs.  H11:   ≥ 0-1 

 

If the p-value is significant (at level α) then we can 
reject H0 in favor of the H1 and declare Non-inferiority. 



Non-inferiority Test in Action 



Non-inferiority Test in Action 

1 



Non-inferiority Test in Action 

1 

H0 



Non-inferiority Test in Action 

1 

H0 H1 



Non-inferiority & Confidence Intervals 

It possible to construct (1-2α)100% confidence 
intervals* just as with equivalence tests, and then to 
determine whether the upper confidence limit is above 
the lower non-inferiority bound. 

 

 

 

 
*See: “Guidance for Industry E9 Statistical Principles for Clinical Trials” (Section 5.5.E) 



Confidence Interval Inclusion 

0 - 1 



Thank you for your attention! 


