Meta-Attributes in Sensory Descriptive Analysis

B.C. Franczak ${ }^{1}$, P.D. McNicholas ${ }^{1}$ and C. Findlay ${ }^{2}$
${ }^{1}$ Department of Mathematics \& Statistics, McMaster University, Hamilton, Ontario, Canada
${ }^{2}$ Compusense Inc., Guelph, Ontario, Canada

Introduction

- The objective of this project is to determine if there are groups of homogeneous attributes, which we will call "meta-attributes" (MAs), present in two data sets
- These data sets resulted from two descriptive analyses, one in 2010 and one in 2014, conducted by trained panels on potato varieties with 52 well-defined attributes. An example of the features of these data sets is given in Table 1.

Table 1: A subset of the mean panelists' scores for each attribute of the potato varieties evaluated in 2014.

	C 1	A 1	A 2	A 3	A 4	A 5	A 6
1	49.80	48.45	32.70	22.95	29.35	46.70	15.00
2	62.55	50.05	32.80	20.90	21.75	50.05	18.15
3	29.85	46.35	29.70	28.85	33.55	31.95	8.45
4	21.65	48.50	26.35	18.80	25.15	27.75	8.60
5	56.70	49.25	32.70	20.90	21.05	39.50	13.70
6	30.35	46.15	31.00	22.85	26.15	40.10	8.05
7	44.40	48.60	27.00	26.60	23.85	33.35	7.15
8	59.95	51.70	34.35	29.20	22.70	26.70	7.45
9	40.45	45.25	29.50	18.95	20.20	40.50	12.30
10	40.65	45.65	24.60	21.25	27.70	41.30	10.55

Methodology

- A model-based clustering approach is utilized to find the MAs; specifically, we define each MA using a constrained mixture of factor analyzers model called the CUU model (see Figure 1 for an example).

Figure 1: A bivariate example of a two-component CUU model. We use the characteristics of each component of the curve to define a group of observations.

- The CUU model has density

$$
\begin{equation*}
f(\mathbf{x} \mid \boldsymbol{\vartheta})=\sum_{g=1}^{G} \pi_{g} \phi_{p}\left(\mathbf{x} \mid \boldsymbol{\mu}_{g}, \boldsymbol{\Lambda} \mathbf{\Lambda}^{\prime}+\mathbf{\Psi}_{g}\right) \tag{1}
\end{equation*}
$$

where $\pi_{g}>0$, s.t., $\sum_{g=1}^{G} \pi_{g}=1$ are the mixing proportions and each component density function, $\phi_{p}\left(\mathbf{x} \mid \boldsymbol{\mu}_{g}, \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{\prime}+\mathbf{\Psi}_{g}\right)$, is multivariate Gaussian.

- From a practical viewpoint, this model lets groups share covariances while allowing variances to differ from group-to-group.
- In addition to fitting the CUU model, we also use principal component analysis (PCA) to determine if any individual attributes are deviating from the other attributes.

Results

- We fitted the CUU model for $G=1, \ldots, 10$ components, $q=1, \ldots, 20$ latent factors, and initialized each model using two different starting points.
- We choose the best fitting model using the Bayesian Information Criterion (BIC; Schwarz, 1978).

The 2010 data set

- For each starting point, the BIC selected CUU models with identical features (see Table 2) with each suggesting that there are two MAs.

Table 2: Features of the best fitting CUU models (A, B) for the 2010 potato varieties

	MAs	q	BIC	Magnitude of each MA
A	2	16	-140485.67	\mid G1\| $=22, \mid$ G2 $\mid=30$
B	2	16	-140743.95	\mid G1 $\|=23,\|\mathrm{G} 2\|=29$

- Comparing each result shows that both models classified 45 of the 52 attributes the same way (Table 3)

Table 3: A cross tabulation of the MAs selected by the best fitting CUU models given in Table 2.

		B	
		MA1	MA2
A	MA1	19	3
	MA2	4	26

The 2014 data set

- For each initialization strategy, the BIC selected a different CUU model (see Table 4).

Table 4: Features of the best fitting CUU models (A, B) for the 2014 potato varieties

	MAs	q	BIC	Magnitude of each MA
A	2	16	-129034.58	$\|\mathrm{G} 1\|=18,\|\mathrm{G} 2\|=34$
B	3	4	-142497.05	$\|\mathrm{G} 1\|=7,\|\mathrm{G} 2\|=21,\|\mathrm{G} 3\|=24$

- This time, we notice that each model has identified a different number of MAs. However, like before, we notice a large amount of overlap between the each MA (see Table 5)
Table 5: A cross tabulation of the MAs selected by the best fitting CUU models given in Table 4.

		B		
		MA1	MA2	MA3
A	MA1	4	14	0
A	MA2	3	7	24

- For the 2010 data set, the results of a PCA do not suggest that any individual attribute is acting independently of the rest. However, for the 2014 data set, one attribute, Flesh Colour, is strongly correlated with the first PC and is deviating from the other attributes (see Figure 2).
- This result raises the following set of questions:

1. For model 2, is MA3 composed of over-expressed attributes?
2. Should Flesh Colour be considered its own group?
3. If we remove Flesh Colour are the remaining attributes homogenous?

- To address each of these questions we use the results of the PCA and refitted the CUU model with the suspect attribute removed

Figure 2: The direction of each attribute in the space of the first two principal components.

- The PCA does not give any evidence that the other attributes that make up MA3 are over-expressed, nor does it suggest that they are acting together.
- Refitting the CUU model, for $G=1, \ldots, 3$ components and $q=1, \ldots, 10$ latent factors, to a subset of the 2014 data set that includes only the attributes that make up MA3 provides no evidence that the considered attributes are not homogeneous with each other.
- We also refitted the CUU model, under the same conditions given in the previous point, to the entire 2014 data set with only Flesh Colour removed. This result is summarized in Table 6.

Table 6: Features of the best fitting CUU models for the 2014 potato varieties with Flesh Colour removed.

	MAs	q	BIC	Magnitude of each MA
A	2	15	-125895.5	$\|\mathrm{G} 1\|=19,\|\mathrm{G} 2\|=32$

- This result provides more evidence that the attributes within MA3, aside from Flesh Colour, are homogeneous with one another

Conclusions

- There is evidence that, within these data sets, there are at least two MAs.
- Comparing the best fitting CUU models between both data sets indicates that 38 attributes were classified in the same way (Table 7).

Table 7: A cross tabulation of the MAs selected by the first models listed in Tables 2 and 4.

		A4	
		MA1	MA2
A2	MA1	13	9
	MA2	5	25

- These MAs could be used to construct a sensory informed design (SID, Franczak et al., 2015) or when performing quality control.

Acknowledgements

This work is supported by a grant-in-aid from Compusense Inc., as well as Collaborative Research and Development Grant from the Natural Sciences and Engineering Research Council of Canada

