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How is it that we never have enough time

to do the job right, 

but always enough time to do it over?
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1. Provide an effective strategy for category 
assessments

2. Reduce large numbers of possible test products 

3. Understand the product sensory space 

Objectives
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4. Design highly efficient consumer studies

5. Combined methods 

6. Deliver reliable and robust outcomes

Objectives
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1. Projective Mapping (Napping)

2. Calibrated Descriptive Analysis (FCM)

3. Sensory Informed Design

The Methods
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4. E-M Imputation of Missing Data

5. Cluster Analysis on Consumer Liking

6. Correlation of Sensory and Consumer Data

The Methods
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Projective Mapping

White bread candidates 

35 products 

to a set of 12
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Projective Mapping

Whole grain breads 

50 products 
to a set of 16
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GPA of 16 Whole Grain Breads 
55 Sensory Attributes

-1.10 1.10

-0.50

0.50

Variance Accounted for:
DIM1 – 66%
DIM2 – 9%
DIM3 – 7%
DIM4 – 4% 
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Sensory Informed 
Balanced Incomplete Block Design (SID)

Sample sets that 

• maximize sensory contrast

• ensure consumer liking 

• results reflect consumer sensory preference
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SID 
Procedure
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SID Consumer Studies

White Bread

Nested designs

12 present 3
12 present 4 

400 consumers 

6 products for liking

12



SID Consumer Studies

Whole Grain Bread

Nested design

16 present 3
16 present 4

570 consumers

6 products for liking
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E-M Imputation of Missing Data

The Role of Imputation in Clustering BIB Data 

Ryan Browne, Brian Franczak, Paul McNicholas and Chris Findlay

(2014) Sensometrics Workshop 2014, Chicago, USA 

This workshop provided a step-by-step process for handling missing data  that was 
systematically absent through SID.

Code in the R-language was made available to permit anyone to apply the 
procedure to their own data.

PGMMImputation package (Franczak et al., 2014) for R (R Core Team, 2014)
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White Bread Study: Results

• Consumer data was collected 

• Missing data was imputed 

• EM approach for mixture model-based clustering

• The scatter plots demonstrate

• stability of the clusters 

• For all three partially presented blocks
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White Bread Study: Results
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3 4 5 6 7 8 9

Overall Liking
All 570 Category Consumers
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2 3 4 5 6 7 8 9

Cluster 1 Overall Liking 
25.8 % 
147  Consumers
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3 4 5 6 7 8 9

Cluster 2 Overall Liking  
45.3 % 
258 Consumers
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3 4 5 6 7 8 9

Cluster 3 Overall Liking  
28.9 %
165 Consumers
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Conclusions

• Projective Mapping 

– efficient 

– selects a representative sensory product set.

• FCM trained DA panel

– less than half the time 

– greater precision.
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Conclusions

• SID consumer research 

– Eliminates fatigue or boredom

– provides a solid basis for consumer segmentation.

• EM Imputation 

– realistic values for the missing data

– integrates with clustering to identify liking segments.
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Putting it all together

Projective

Mapping

Calibrated

Descriptive 
Analysis

SID-based 
Consumer 
Research

Clustering 
and 

Correlation
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