Investigating only a subset of paired comparisons after principal component analysis

John Castura/ July 20, 2023/ Peer-reviewed Paper/ 0 comments

Principal component analysis (PCA) is often used to summarize and explore multivariate data sets, including sensory evaluation data sets. We propose how to conduct PCA of a results matrix in which only a subset of the paired comparisons is of interest. We illustrate the proposed approach with two data sets, both from trained sensory panels. In the first example, assessors

Read More

Evaluation of complementary numerical and visual approaches for investigating pairwise comparisons after principal component analysis

John Castura/ June 1, 2023/ Peer-reviewed Paper/ 0 comments

We propose and evaluate numerical and visual methods for investigating paired comparisons after principal component analysis (PCA). PCA results can be visualized to facilitate an understanding of the relationships between the products and the sensory attributes. But identifying and visualizing significant product differences in multiple PCs simultaneously is not straightforward. A benefit of the proposed methods is that they provide

Read More

Investigating paired comparisons after principal component analysis

John Castura/ January 24, 2023/ Peer-reviewed Paper/ 0 comments

Principal component analysis (PCA) is often used to explore sensory and consumer test data about products on multicollinear sensory attributes. In this paper, we propose an approach for investigating paired comparisons between products and their uncertainties in the principal components. We use the truncated total bootstrap (TTB) procedure to simulate virtual panels from the original data set. The virtual-panel results

Read More

Evaluation of complementary numerical and visual approaches for investigating pairwise comparisons after principal component analysis

John Castura/ November 16, 2022/ Oral Presentation/ 0 comments

We propose and evaluate numerical and visual methods for investigating paired comparisons after principal component analysis (PCA). PCA results can be visualized to facilitate an understanding of the relationships between the products and the sensory attributes. But identifying and visualizing significant product differences in multiple PCs simultaneously is not straightforward. A benefit of the proposed methods is that they provide

Read More